Characterizing the structure and function of a bacterial multi-kinase sensory complex
表征细菌多激酶感觉复合物的结构和功能
基本信息
- 批准号:10488627
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-13 至 2023-09-12
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAnti-Bacterial AgentsBacteriaBindingBiochemicalBioinformaticsBiological AssayBiological ModelsBiosensorCaulobacter crescentusCell AdhesionCell physiologyCellular biologyChIP-seqComplementComplexCuesDNADNA BindingDataDecision MakingDetectionDevelopmentEnvironmentEukaryotaFluorescence Resonance Energy TransferGene ExpressionGenesGenetic TranscriptionGoalsGram-Negative BacteriaHomeostasisIn VitroIndividualLinkMass Spectrum AnalysisMediatingMicrobial BiofilmsModelingMolecularNamesOutputOxidation-ReductionPAWR proteinPhasePhosphorylationPhosphotransferasesPhysiologicalPhysiological ProcessesPlayProcessProteinsProteobacteriaReactionRegulationReporterResearchRoleSensorySignal PathwaySignal TransductionStructureSurfaceSystemTestingVariantWorkX-Ray Crystallographyantimicrobialbasebiological adaptation to stresscell motilityenvironmental adaptationextracellularinformation processinginsightinterdisciplinary approachnovelpathogenic bacteriaprogramsprotein-histidine kinasereconstitutionresponsesensor histidine kinasesensory systemtargeted treatmenttranscription factoryeast two hybrid system
项目摘要
Abstract
Bacteria have an incredible capacity to sense and respond to intra- and extracellular fluctuations in the
environment in order to maintain cellular homeostasis. In bacteria, environmental adaptation is commonly
mediated by two-component systems (TCS) that consist of a sensor histidine kinase (HK) that phosphorylates a
cognate response regulator (RR) in response to signal detection. Upon phosphorylation, the RR can bind to DNA
and alter gene expression to facilitate environmental adaptation. Classical TCS have historically been thought
to signal in a highly linear manner with minimal interaction or cross-regulation with other signaling pathways. A
growing body of data from our group and others provide evidence that an unusual class of histidine kinases,
known as HWE kinases, can form multi-protein signaling complexes, creating a new paradigm in bacterial signal
transduction. These signaling systems can integrate information from numerous environmental inputs to
coordinate an array of physiological responses. In Caulobacter crescentus, one such signaling complex, hereby
referred to as the Alphaproteobacterial signalosome, has been identified to coordinately regulate cellular surface
attachment, a critical initial step in biofilm formation. We have shown that the Alphaproteobacterial signalosome
consists of a) the HWE kinase SkaH that functions as a molecular hub protein, b) the HWE kinase LovK, and c)
the classical HK, SpdS. Individually, LovK and SpdS play critical roles in modulating the general stress response
and stationary phase adaptation. Interestingly, sensory information from LovK and SpdS can be integrated
through the signalosome to modulate cellular adhesion through the downstream transcription factors, RtrA and
RtrB, and the hypothetical protein, RtrC. Preliminary data provides evidence that the signalosome is comprised
of additional HWE and classical HK kinases, suggesting that the sensory complex can integrate a broader range
of signals than previously suspected. The research proposed here takes a multidisciplinary approach to
characterize the structure and function of the HWE signalosome. The first aim will use biochemical approaches
and mass spectrometry to identify molecular partners of SkaH and dissect direct interactions within the
signalosome. The second aim will complement the structural analysis of the signalosome by using biochemical
approaches to analyze the signal flow through the signalosome components. Preliminary evidence suggests that
the hypothetical protein, RtrC, is a cryptic transcription factor that functions as a critical output for the HWE
signalosome. In the third aim, I will characterize the structure and function of RtrC with X-ray crystallography and
fluorescent reporters. Additionally, I will use FRET-based biosensors and motility assays to examine the
regulatory link between RtrC and c-di-GMP signaling. The HWE signalosome serves as a prime model system
for examining how multi-kinase sensory systems detect and process complex environmental information in order
to regulate physiological responses. Additionally, as HWE kinases are present in many bacterial pathogens,
insights gained from this work will aid in the development of antibacterial therapies that target TCS.
摘要
细菌具有令人难以置信的能力来感知和响应细胞内和细胞外的波动
环境,以维持细胞内稳态。在细菌中,环境适应通常是
由双组分系统(TCS)介导,该系统由传感器组氨酸激酶(HK)组成,
同源反应调节子(RR)响应于信号检测。磷酸化后,RR可以与DNA结合,
并改变基因表达以促进环境适应。传统的TCS一直被认为
以高度线性的方式发出信号,与其他信号传导途径的相互作用或交叉调节最小。一
来自我们小组和其他人的越来越多的数据提供了证据,证明一类不寻常的组氨酸激酶,
称为HWE激酶,可以形成多蛋白信号复合物,创造了细菌信号传导的新范例
转导这些信号系统可以整合来自众多环境输入的信息,
协调一系列生理反应。在新月柄杆菌(Caulobacter crescentus)中,一种这样的信号传导复合物,由此
被称为α-变形菌信号体,已被鉴定为协调调节细胞表面
附着,生物膜形成的关键初始步骤。我们已经证明,α-变形菌信号体
由a)HWE激酶SkaH,其作为分子中枢蛋白发挥作用,B)HWE激酶LovK,和c)
经典的HK、SpdS。LovK和SpdS分别在调节一般应激反应中起关键作用
和固定相位适应。有趣的是,来自LovK和SpdS的感觉信息可以被整合
通过信号体调节细胞粘附,通过下游转录因子RtrA和
RtrB和假设的蛋白质RtrC。初步数据提供的证据表明,信号体是由
额外的HWE和经典HK激酶,表明感觉复合体可以整合更广泛的
比以前怀疑的信号。这里提出的研究采取了多学科的方法,
表征HWE信号体的结构和功能。第一个目标将使用生物化学方法
和质谱法来鉴定SkaH的分子伴侣,并分析SkaH内的直接相互作用。
信号体第二个目标将补充信号体的结构分析,
方法来分析通过信号体组件的信号流。初步证据显示,
假设的蛋白质RtrC是一种隐蔽的转录因子,作为HWE的关键输出发挥作用
信号体第三个目标是用X射线晶体学方法研究RtrC的结构和功能,
荧光报告基因。此外,我将使用基于FRET的生物传感器和运动分析来检查
RtrC和c-di-GMP信号传导之间的调节联系。HWE信号体作为主要模型系统
研究多激酶感觉系统如何检测和处理复杂的环境信息,
来调节生理反应。此外,由于HWE激酶存在于许多细菌病原体中,
从这项工作中获得的见解将有助于开发针对TCS的抗菌疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mclaughlin Maeve其他文献
Mclaughlin Maeve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mclaughlin Maeve', 18)}}的其他基金
Characterizing the structure and function of a bacterial multi-kinase sensory complex
表征细菌多激酶感觉复合物的结构和功能
- 批准号:
10314187 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




