Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces

Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列

基本信息

  • 批准号:
    10490983
  • 负责人:
  • 金额:
    $ 68.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-27 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract The purpose of this project is to optimize circuit and system architectures of active electrode arrays which will provide low-noise, multiplexed acquisition of neural signals from thousands of electrodes. We will reduce noise by exploiting a novel current-sensing circuit approach and new multiplexing strategies, such as Code-Division Multiple Access (CDMA). We will also apply novel system level de-noising approaches using kriging. Finally, we will demonstrate our low noise, active arrays using a unique, ultra-flexible 3D neural interface paradigm: Neuro-CROWN: CMOS-based, ROlling-enabled, loW-noise Neuroelectronics. These electrode arrays include thousands of electrodes that can be used for both recording and stimulation, enabling studies that require recordings from multiple, large cortical regions in rodents and non-human primates (NHP) at cellular scale. The electrode arrays are extremely thin (<25 µm) and flexible, and are made in both non-penetrating and 3D penetrating configurations, of which the latter will be formed from a simple and unique rolling of 2D soft electrode array (ROSE) method. Amplifiers and multiplexers integrated directly into the electrode array, using commercially fabricated silicon transistors, intelligently combine signals inside the array so that recording from up to 4,096 electrodes is possible with fewer than 20 multiplexed external wire connections. The small number of interface wires facilitates long-term experiments in chronically-implanted, freely-behaving animals and eases future wireless integration. The electrode arrays will be manufactured in large quantities (3800 devices / run) using full wafers at X-fab. By leveraging a cost-effective manufacturing process, the raw materials cost of each electrode array will be ~$10, excluding post processing labor which will be supplied by this program. Our dissemination program will make device broadly available to a large cohort of end users. We have previously disseminated early-stage technology to ~10 labs are now scaling up to disseminate that technology to ~100 labs. Based on feedback we received during this dissemination effort, neural interfaces with high SNR and 3-dimensional measurement are critically important to neuroscience research, motivating this project. We will disseminate this new technology to at least 10 labs in this effort, solicited from the neuroscience community at large. We will solicit end user feedback through a workshop at the Society for Neuroscience (SfN) meeting and use this feedback to shape our device designs. This project seeks to enable BRAIN Initiative investigators and the broader neuroscience community to perform very large-scale recordings in animal models. Further, the research enabled by this technology will be able to be rapidly translated to humans in the future, through parallel, separately-funded efforts by our team to bring actively-multiplexed electrode arrays to human use.
项目摘要/摘要 该项目的目的是优化有源电极阵列的电路和系统架构,这将 提供来自数千个电极的低噪声、多路传输的神经信号采集。我们将减少噪音 通过使用新的电流检测电路方法和新的多路复用策略,如码分多址 多址(码分多址)。我们还将使用克立格法应用新的系统级去噪方法。最后,我们 将使用独特、超灵活的3D神经接口范例展示我们的低噪声有源阵列: NeuroCrown:基于cmos、支持滚动、低噪音的神经电子产品。这些电极阵列包括 数以千计的电极可用于记录和刺激,使研究能够需要 来自啮齿动物和非人灵长类动物(NHP)多个大皮质区域的细胞尺度的记录。这个 电极阵列非常薄(25微米),非常灵活,有非穿透性和3D两种形式 穿透配置,后者将由简单而独特的2D软电极滚动形成 数组(ROSE)方法。直接集成到电极阵列中的放大器和多路复用器,商用 制造的硅晶体管,智能地组合阵列内部的信号,以便从高达4,096 电极可以使用少于20个多路外部导线连接。接口数量较少 电线促进了长期植入、行为自由的动物的长期实验,并缓解了未来 无线集成。电极阵列将大量生产(3800个器件/运行), X-FAB的晶圆厂。通过利用经济高效的制造工艺,每个电极的原材料成本 数组将是~10美元,不包括将由该程序提供的后处理人工。 我们的传播计划将使设备广泛提供给一大批终端用户。我们有 以前向约10个实验室传播的早期技术现在正在扩大传播该技术 到大约100个实验室。根据我们在传播过程中收到的反馈,具有高信噪比的神经接口 而三维测量对神经科学研究至关重要,这是这个项目的动机。我们 将把这项新技术传播给至少10个实验室,这项工作是从神经科学界征求的 逍遥法外。我们将在神经科学学会(SFN)会议上通过研讨会征求最终用户的反馈 并利用这些反馈来塑造我们的设备设计。 该项目旨在使大脑倡议研究人员和更广泛的神经科学界 在动物模型中进行超大规模录音。此外,这项技术带来的研究将是 通过我们团队的并行、单独资助的努力,能够在未来快速转化为人类 将主动多路复用电极阵列带给人类使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Fang其他文献

Hui Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Fang', 18)}}的其他基金

Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
  • 批准号:
    10705770
  • 财政年份:
    2021
  • 资助金额:
    $ 68.49万
  • 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
  • 批准号:
    10914715
  • 财政年份:
    2021
  • 资助金额:
    $ 68.49万
  • 项目类别:
Massively Multiplexed Gold Microprobe Arrays for Whole-Mouse-Brain Recording
用于全小鼠大脑记录的大规模多重金微探针阵列
  • 批准号:
    10442207
  • 财政年份:
    2021
  • 资助金额:
    $ 68.49万
  • 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
  • 批准号:
    10674415
  • 财政年份:
    2021
  • 资助金额:
    $ 68.49万
  • 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
  • 批准号:
    10294053
  • 财政年份:
    2021
  • 资助金额:
    $ 68.49万
  • 项目类别:

相似海外基金

SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
  • 批准号:
    2329940
  • 财政年份:
    2023
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
  • 批准号:
    10075892
  • 财政年份:
    2023
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10681326
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10621402
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
  • 批准号:
    573452-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
  • 批准号:
    10032436
  • 财政年份:
    2022
  • 资助金额:
    $ 68.49万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了