Simulation of Multi-Protein systems
多蛋白系统的模拟
基本信息
- 批准号:10491046
- 负责人:
- 金额:$ 31.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAlzheimer&aposs disease modelAprotininAreaAwardBindingBiological ModelsBiological ProductsBovine Serum AlbuminCapsidCell physiologyCellsCellular biologyCollaborationsComplexCrowdingDataDevelopmentDiseaseErythrocytesEvaluable DiseaseEvaluationFormulationFourier TransformGoalsGrantHemoglobinImage CompressionLiquid substanceMass Spectrum AnalysisMemoryMethodsMinorModelingMolecular ConformationMultiprotein ComplexesMycoplasma genitaliumNational Institute of General Medical SciencesNucleosome Core ParticlePathway interactionsPeptidesPerformancePharmaceutical PreparationsPropertyProtein ConformationProteinsResolutionRestRotationSamplingSpeedStructureSumSystemValidationVariantWritingbaseexperimental groupexperimental studyflexibilitygamma-Crystallinsimprovedinnovationinsightmethod developmentmolecular assembly/self assemblymolecular modelingmouse modelmulticatalytic endopeptidase complexnovel strategiesparticleprotein aggregationself assemblysimulationtherapeutic development
项目摘要
Simulation of large multi-component molecular assemblies with atomistic details is an important
step toward understanding cellular processes. The goal of this proposal is to develop an
efficient method for the simulation of multi-protein systems consisting of many copies of a few
types of proteins, each in a number of discrete conformations. The basis for our approach is the
observation that the interaction energy between two proteins (or discrete protein conformations
within an ensemble) – can be efficiently calculated over the entire rotational-translational space
using the fast Manifold Fourier transform (FMFT) correlation approach. Given any conformation
of a complex multi-particle system, its energy can be easily obtained by summing the pairwise
interaction energies extracted from the lookup tables. The key innovation to efficiently
implement this method is our ability to compress and store the interaction energy lookup tables
in memory using wavelet sets. We will apply the method in two application. The first is
simulation of multi-protein assemblies and their association pathways, possibly in conjunction
with low resolution Mass Spectrometry (MS) and EM data, providing mechanistic insight into
cellular function. The second is simulation of protein aggregation and crowding, which is
important for the fundamental understanding of cell biology and therapeutic development.
具有原子细节的大型多组分分子组装的模拟是一个重要的研究方向
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmytro Kozakov其他文献
Dmytro Kozakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmytro Kozakov', 18)}}的其他基金
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8450066 - 财政年份:2010
- 资助金额:
$ 31.08万 - 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8633467 - 财政年份:2010
- 资助金额:
$ 31.08万 - 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8240452 - 财政年份:2010
- 资助金额:
$ 31.08万 - 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8042533 - 财政年份:2010
- 资助金额:
$ 31.08万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Research Grant