Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ

基于探索多维能量的蛋白质对接细化方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): All successful state-of-the-art protein docking methods employ a so called multistage approach. At the first stage of such approaches a rough energy potential is used to score billions of conformations. At a second stage, thousands of conformations with the best scores are retained and clustered based on a certain similarity metric. Cluster centers correspond to putative predictions/models. Recent work by the proposing team demonstrated that greater prediction quality can be achieved by properly exploring these clusters through a process called refinement. This work resulted in the development of a prototype refinement approach - the Semi-Definite programming-based Underestimation method (SDU). The central goal of the project is to build on the SDU success and develop a new high-throughput refinement protocol able to produce predictions of near-crystallographic quality in the most computationally efficient manner. Efficiency will be achieved by leveraging the funnel-like shape that binding free energy potentials exhibit. The specific aims are: (1) the development of a new clustering method that can classify the conformations retained from a first-stage method into clusters suitable for the proposed refinement strategy; (2) the characterization of the structure of the multi-dimensional funnel corresponding to each cluster and the development of an efficient refinement strategy to explore this funnel; (3) the development of a side-chain positioning algorithm appropriate for docking by leveraging Markov random field theory; and (4) the dissemination of the algorithms developed through the release to the research community of a software package and an automated refinement server. It is anticipated that the computational efficiency gains of the proposed refinement protocol over alternative Monte Carlo methods will exceed two orders of magnitude, while, at the same time, significantly improve upon the accuracy achieved by earlier refinement approaches. A novelty of the proposed work is in its use of sophisticated machinery from the fields of optimization and decision theory specially tailored to the biophysical properties of the docking problem. Techniques from convex and combinatorial optimization, machine learning, and Markov random fields are brought to bear on the refinement stage of multistage protein docking approaches. An important element of the work is the systematic characterization of multi-dimensional binding energy funnels. The existence of such funnels has been long conjectured but it has not led to new docking approaches so far. The proposed algorithms essentially achieve this goal by devising efficient strategies to identify, characterize, and explore these funnels.
描述(由申请人提供):所有成功的最先进的蛋白质对接方法都采用所谓的多阶段方法。在这种方法的第一阶段,使用粗略的能量势来对数十亿的构象进行评分。在第二阶段,保留具有最佳分数的数千个构象,并基于一定的相似性度量进行聚类。聚类中心对应于假定的预测/模型。提案团队最近的工作表明,通过一个称为细化的过程适当地探索这些集群,可以实现更高的预测质量。这项工作导致了一个原型细化方法的发展-半定规划为基础的低估方法(SDU)。该项目的中心目标是在SDU成功的基础上,开发一种新的高通量细化方案,能够以最有效的计算方式预测近晶体学质量。效率将通过利用结合自由能势表现出的漏斗状形状来实现。具体目标是:(1)开发了一种新的聚类方法,该方法可以将从第一阶段方法保留的构象分类为适合于所提出的细化策略的簇;(2)表征对应于每个簇的多维漏斗的结构,并开发了一种有效的细化策略来探索该漏斗;(3)通过利用马尔可夫随机场理论开发适合对接的侧链定位算法;以及(4)通过向研究界发布软件包和自动细化服务器来传播所开发的算法。预计所提出的改进协议在替代蒙特卡罗方法的计算效率增益将超过两个数量级,而在同一时间,显着提高早期的改进方法所实现的精度。所提出的工作的一个新奇在于它使用了专门针对对接问题的生物物理特性的优化和决策理论领域的复杂机械。从凸优化和组合优化,机器学习,马尔可夫随机场的技术带来的影响多级蛋白质对接方法的细化阶段。这项工作的一个重要组成部分是多维结合能漏斗的系统表征。这种漏斗的存在已经被证明很久了,但到目前为止,它还没有导致新的对接方法。所提出的算法基本上通过设计有效的策略来识别,表征和探索这些漏斗来实现这一目标。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting and evaluating the effect of bivalirudin in cardiac surgical patients.
预测和评估比伐卢定在心脏手术患者中的效果。
A Predictive Model for the Anticoagulant Bivalirudin Administered to Cardiac Surgical Patients.
Inverse Optimization: A New Perspective on the Black-Litterman Model.
  • DOI:
    10.1287/opre.1120.1115
  • 发表时间:
    2012-12-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bertsimas D;Gupta V;Paschalidis IC
  • 通讯作者:
    Paschalidis IC
Distribution-dependent robust linear optimization with applications to inventory control.
  • DOI:
    10.1007/s10479-013-1467-4
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Kang SC;Brisimi TS;Paschalidis IC
  • 通讯作者:
    Paschalidis IC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmytro Kozakov其他文献

Dmytro Kozakov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmytro Kozakov', 18)}}的其他基金

Simulation of Multi-Protein systems
多蛋白系统的模拟
  • 批准号:
    10491046
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Simulation of Multi-Protein systems
多蛋白系统的模拟
  • 批准号:
    10798597
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Simulation of Multi-Protein systems
多蛋白系统的模拟
  • 批准号:
    10680446
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
  • 批准号:
    8450066
  • 财政年份:
    2010
  • 资助金额:
    $ 31.6万
  • 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
  • 批准号:
    8240452
  • 财政年份:
    2010
  • 资助金额:
    $ 31.6万
  • 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
  • 批准号:
    8042533
  • 财政年份:
    2010
  • 资助金额:
    $ 31.6万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了