Risk stratification of uncomplicated type B aortic dissection using clinical and engineering analysis
使用临床和工程分析对简单的 B 型主动脉夹层进行风险分层
基本信息
- 批准号:10491087
- 负责人:
- 金额:$ 55.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:4D MRIAcuteAlternative TherapiesAnatomyAneurysmAntihypertensive AgentsAortaAortic AneurysmAortic RuptureBiomechanicsChestChronic PhaseClinicalClinical EngineeringComputerized Medical RecordDataDatabasesDevelopmentDiagnosisDiseaseDissectionEarly InterventionEchocardiographyFailureFollow-Up StudiesGoalsGrowthHarvestHospital MortalityImageIncidenceInterventionLiquid substanceMachine LearningMagnetic Resonance ImagingMapsMechanicsMedicalMedical ImagingModelingMorbidity - disease rateOperative Surgical ProceduresOrganOutcomePatientsPerformancePhasePredictive FactorProceduresPropertyRiskRisk FactorsRuptureSecondary toSeriesShapesStressStructureSurvival RateTechniquesTissuesTreatment Failurebaseclinical riskdata repositorydemographicsexperimental studyhemodynamicshigh riskimaging studyimprovedindexingmachine learning modelmachine learning predictionmortalitypredictive modelingprospectiverecruitrepairedrisk stratificationserial imagingsurveillance imaging
项目摘要
Project Summary
Type B Aortic Dissection (TBAD) is a lethal disease which occurs when a tear develops in
the inner lining (intimal layer) of the aorta, causing the layers of the aortic wall to separate (dissect)
creating “true” and “false” lumens. Complicated TBADs with presence of either organ
malperfusion or aortic rupture have a high in-hospital mortality rate and require emergent surgical
or endovascular therapy. Uncomplicated TBADs have been traditionally managed with optimal
medical therapy (OMT) consisting of aggressive anti-hypertensive therapy and surveillance
imaging. OMT results in low in-hospital mortality rates, but dismal long-term survival rates of 48-
66%, and overall intervention-free survival rates of less than 50% secondary to aortic aneurysm
formation and rupture. These poor long-term outcomes support a paradigm change in the
treatment of the uncomplicated TBADs. Thus, there is an urgent and unmet clinical need for
promptly identifying those uncomplicated TBAD patients that will likely fail OMT in the acute phase,
and thus benefit from early intervention such as Thoracic Endovascular Aortic Repair (TEVAR).
Therefore, the objective of this project is to develop a risk stratification model for predicting
both failure of OMT and the optimal timing of intervention in uncomplicated TBAD patients. To
achieve this goal, a retrospective analysis will be conducted for about 500 uncomplicated TBAD
patients from the Emory Aortic Databank. Clinical and anatomic data will be harvested from the
electronic medical record and image studies to identify predictors of OMT failure. Next, using the
same patient database, a series of mechanical experiments will be performed to obtain
hyperelastic and failure properties of the TBAD tissues, from which rupture/tear risk metrics will
be developed. Fluid-structure interaction (FSI) analyses will be validated and applied to obtain
“heat maps” of hemodynamic and wall stress fields. The risk indices will be consequently
extracted. For patients with longitudinal imaging data, TBAD progression will be predicted using
an integrated growth and remodeling (G&R) and dissection propagation model. Critical
biomechanical parameters will be identified as potential predictors of OMT failure. Finally,
machine learning (ML) techniques will be used to combine clinical and biomechanical predictors
to develop a multi-factorial, personalized TBAD risk stratification model. To evaluate the
performance of the proposed approach, we will recruit and perform a longitudinal follow-up study
of 35 acute uncomplicated TBAD patients to validate our approach by comparing the ML-model-
prediction results with actual clinical outcomes.
项目摘要
B型主动脉夹层(TBAD)是一种致命的疾病,当撕裂在
主动脉的内层(内膜层),导致主动脉壁各层分离(解剖)。
创造出“真”和“假”的流明。伴有任一器官存在的复杂的TBADs
血流灌注不良或主动脉破裂住院死亡率高,需要紧急手术。
或者血管内治疗。简单的TBAD传统上是通过优化的
药物治疗(OMT)包括积极的降压治疗和监测
成像。OMT导致较低的住院死亡率,但令人沮丧的长期存活率为48-
66%,继发于主动脉瘤的总无介入存活率不到50%
形成和破裂。这些糟糕的长期结果支持了
单纯性TBADs的治疗因此,存在着一种迫切的和未得到满足的临床需求
及时识别那些急性期OMT可能失败的无并发症的TBAD患者,
并因此受益于早期干预,如胸主动脉内膜修复术(TEVAR)。
因此,本项目的目标是开发一种用于预测的风险分层模型
无并发症的TBAD患者OMT的失败和介入的最佳时机至
为实现这一目标,将对约500个简单的TBAD进行回顾分析
来自Emory Aortic数据库的患者。临床和解剖学数据将从
电子病历和影像研究,以确定OMT失败的预测因素。接下来,使用
相同的患者数据库,将进行一系列机械实验以获得
TBAD组织的超弹性和失效特性,根据这些特性,破裂/撕裂风险度量
被开发出来。流固耦合(FSI)分析将得到验证和应用,以获得
血流动力学和壁应力场的“热图”。因此,风险指数将是
提取出来的。对于有纵向成像数据的患者,将使用以下方法预测TBAD进展
一个完整的生长与重塑(G&R)和解剖传播模型。批判性
生物力学参数将被确定为OMT失败的潜在预测因素。最后,
机器学习(ML)技术将用于结合临床和生物力学预测
开发多因素、个性化的TBAD风险分层模型。要评估
执行建议的方法,我们将招募并进行纵向跟踪研究
在35名急性无并发症的TBAD患者中,通过比较ML模型-
预测结果与实际临床结果相一致。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Graham Leshnower其他文献
Bradley Graham Leshnower的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Graham Leshnower', 18)}}的其他基金
Risk stratification of uncomplicated type B aortic dissection using clinical and engineering analysis
使用临床和工程分析对简单的 B 型主动脉夹层进行风险分层
- 批准号:
10673753 - 财政年份:2021
- 资助金额:
$ 55.21万 - 项目类别:
Risk stratification of uncomplicated type B aortic dissection using clinical and engineering analysis
使用临床和工程分析对简单的 B 型主动脉夹层进行风险分层
- 批准号:
10298838 - 财政年份:2021
- 资助金额:
$ 55.21万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 55.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 55.21万 - 项目类别:
Standard Grant