Computational methods to predict gene regulatory network dynamics and cell state transitions

预测基因调控网络动态和细胞状态转变的计算方法

基本信息

  • 批准号:
    10490309
  • 负责人:
  • 金额:
    $ 41.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-18 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary The goal of this research program is to provide tools for the discovery of transcriptional networks that control cell fate decisions. Cell fate decisions driven by cell state transitions underlie essential cell processes from development to cellular reprogramming. There is an opportunity to make use of publicly available genomic data to develop predictive computational models of cell state transition dynamics. The methods proposed will offer means to gain insight into cell fate decision-making and how it is transcriptionally regulated, given specific cell fate decision points and suitable data. Examples of such decision points include control of epidermal regeneration, or the maintenance of balance among myeloid cell fates during hematopoiesis. In order to bridge the gap between genomics and cell dynamics, statistical and computational modeling challenges must be overcome. Two key challenges form the basis of this research program: 1) developing statistical methods to infer regulatory networks while accounting for the levels of variability between single cells, and 2) developing computational models to couple gene regulatory dynamics within cells and cell-cell communication between cells. To address the first challenge, we will develop machine learning models to predict gene expression dynamics from time-series data. These models will be able to classify genes by their temporal patterns, and the results will inform gene network inference. We will then develop methods for network inference that integrate muti-modal data (single-cell RNA and ATAC sequencing) as well as cell-cell signaling information to learn networks that control specific cell state transitions. To address the second challenge, we will develop differential equation-based multiscale models of the gene regulatory network dynamics coupled with the cell- external signaling dynamics. This will allow us to capture both molecular and cellular dynamics in high resolution, and thus identify which parameters exert key control over the system. We will use Bayesian methods for parameter inference to fit models to data and perform model selection, adapting methods where needed for multiscale model inference. Models will be rigorously evaluated through their application to specific systems, including cell differentiation (e.g. myeloid fate decisions during hematopoiesis) and development (e.g. nephron progenitor cell fate decisions). In each of these organ systems, models predictions will be tested experimentally via collaborations. Following iterative testing, open-source, validated methods will be made widely available for the study of the dynamic processes of cell fate decision-making.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam L MacLean其他文献

Adam L MacLean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam L MacLean', 18)}}的其他基金

Computational methods to predict gene regulatory network dynamics and cell state transitions
预测基因调控网络动态和细胞状态转变的计算方法
  • 批准号:
    10688241
  • 财政年份:
    2021
  • 资助金额:
    $ 41.25万
  • 项目类别:
Computational methods to predict gene regulatory network dynamics and cell state transitions
预测基因调控网络动态和细胞状态转变的计算方法
  • 批准号:
    10276680
  • 财政年份:
    2021
  • 资助金额:
    $ 41.25万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了