Ancient viral threats through the lens of adaptation in human genomes
从人类基因组适应的角度看古代病毒的威胁
基本信息
- 批准号:10490279
- 负责人:
- 金额:$ 37.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-07-30
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBayesian AnalysisCOVID-19 pandemicComplexDevelopmentEpidemicEventEvolutionFutureGenesGenetic Predisposition to DiseaseGenetic RecombinationGenomicsGraphHumanHuman GenomeImmuneImmune systemKnowledgeLeftLinkMachine LearningMutationPopulationSignal TransductionTestingTimeViralVirusWorkarms racebasedeep learninglensnovel strategiespandemic diseasepathogenreconstructiontool
项目摘要
Project Summary
The current SARS-COV2 pandemic has brought to light that more efforts are needed to evaluate the pandemic
potential of viruses that can spill over in human populations. To assess the pandemic potential of specific
viruses, over the next five years my lab will ask if similar viruses caused epidemics not only during the recent
documented past, but during the much longer time scale of human evolution. Viruses that caused epidemics in
the past are indeed the most likely to cause epidemics again in the future, and hundreds of viral epidemics
likely plagued human populations during their evolution. This work will fill gaps in knowledge on epidemics in
ancestral human populations, and by doing so, will enable a better assessment of the viruses that represent a
future pandemic threat.
To study ancient epidemics, my lab will exploit host genomic adaptation driven by ancient viruses.
Arms races with viruses have shaped the host immune system by driving a large number of adaptations. I
recently showed that viruses left abundant signals of adaptation not only in immune genes, but across the
entire human genome. The lab will examine signals of adaptation left by specific viruses in human genomes, to
detect, date, and functionally characterize ancient epidemics. To this aim, we will develop new statistical tools
based on recent advances in machine learning and in the reconstruction of Ancestral Recombination Graphs
(ARGs). These new approaches with increased power to detect and date genomic adaptation will allow us to ask
the following questions:
1) Which viruses drove ancient epidemics in human evolution?
My lab will create deep learning tests with high power to detect complex genomic adaptation within the past
~200,000 years of human evolution.
2) When did specific viruses drive ancient epidemics?
We will use ARGs and Approximate Bayesian Computation to date ancient epidemics, by dating the host
adaptive events driven by specific viruses.
3) Which functional host genetic changes were selected during ancient epidemics, in which
genes, and how do they influence genetic susceptibility to present viruses?
We will investigate regulatory adaptation to viruses and the overall impact of virus-driven host adaptation on
the genetic susceptibility of different human populations to specific present viruses, thereby providing
virologists with strong candidate host genes for further inquiry.
My lab is uniquely suited to decipher ancient epidemics by linking host-pathogen interactions together
with the latest developments in the population genomics of adaptation.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Enard其他文献
David Enard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Enard', 18)}}的其他基金
Ancient viral threats through the lens of adaptation in human genomes
从人类基因组适应的角度看古代病毒的威胁
- 批准号:
10665076 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Ancient viral threats through the lens of adaptation in human genomes
从人类基因组适应的角度看古代病毒的威胁
- 批准号:
10274677 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别: