Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors

对 COVID-19 传播和保护行为的耦合动态进行建模

基本信息

  • 批准号:
    10490886
  • 负责人:
  • 金额:
    $ 56.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-17 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract A growing number of COVID-19 transmission models have been developed to help forecast the on-going epi- demic and compare outcomes of different non-pharmaceutical interventions (NPIs) in terms of cases, deaths, and medical supply needs. Most of these models do not include adaptive behavioral effects describing how risk perceptions and fatigue influence engagement with social distancing and transmission reduction. Decisions on mask-wearing, levels of social contact, and vaccination will define whether the epidemic is controlled or enters annual circulation. We propose the development of population-based (PBM) and agent-based (ABM) transmis- sion models to study the interplay between individual behavior and transmission dynamics, while considering the many uncertainties which still surround the virus, such as seasonal effects and the loss of immunity. Addition- ally, our models will be used to study how COVID-19 and seasonal influenza and respective behaviors interact, exacerbate outcomes, and potentially overwhelm the health care system. These models will build upon our prior research. Since Fall 2016 we have conducted regular longitudinal surveys investigating attitudes towards, risk perceptions of, and propensity to vaccinate for seasonal influenza. The ABM models constructed from these data account for adaption and memory of past experiences, peer effects, and population heterogeneity. Using machine learning methods, we have augmented a synthetic network representative of a small US city with this behavioral data. We have continued to conduct modified versions of these surveys to track how these beliefs translate to COVID-19. In parallel, we have developed a compartmental population-based model of COVID-19, which models transmission and the effects of NPI intensity and timing on both health and economic outcomes. We propose to extend our current compartmental PBM and build a new individual-level ABM, informed by longitudinal surveys. We will conduct a four-year longitudinal panel survey to construct an empirical behavioral model for decisions to socially distance, engage in transmission reduction measures (such as mask-wearing), and vaccinate. This information will be combined with our existing synthetic network data-set to enable us to build an individual level ABM of the spread of COVID-19 in a representative US city, integrated with our influenza ABM. This model will capture both how individual behaviors impact macro-level disease transmission and how influenza and COVID-19 could interact. Insights and data from our individual-level model will be used to inform and parameterize adaptive behavior within our compartment-level model, allowing for policy comparisons across a range of US states. In addition, we will consider which policies are robust to key behavioral and technological uncertainties, such as the extent of behavior change in response to perceived risk and the timing and effectiveness of vaccines. Finally, we will develop web-based interactive tools that allow for the exploration and comparison of different policies in a variety of potential futures.
项目概要/摘要 越来越多的 COVID-19 传播模型已被开发出来,以帮助预测正在发生的疫情 流行病并比较不同非药物干预措施 (NPI) 在病例、死亡、 和医疗供应需求。大多数这些模型不包括描述风险如何发生的适应性行为效应 看法和疲劳会影响对社交距离和减少传播的参与。关于的决定 戴口罩、社交接触程度和疫苗接种将决定疫情是否得到控制或进入 年度流通量。我们建议发展基于人群(PBM)和基于代理(ABM)的传播 sion 模型来研究个体行为和传播动态之间的相互作用,同时考虑 该病毒仍然存在许多不确定性,例如季节性影响和免疫力的丧失。添加- 我们的模型将用于研究 COVID-19 和季节性流感以及各自的行为如何相互作用, 加剧结果,并可能使医疗保健系统不堪重负。这些模型将建立在我们之前的基础上 研究。自 2016 年秋季以来,我们定期进行纵向调查,调查人们对风险的态度 对季节性流感疫苗接种的看法和倾向。根据这些数据构建的 ABM 模型 考虑对过去经历的适应和记忆、同伴效应和人口异质性。使用机器 学习方法,我们用这种行为增强了代表美国小城市的合成网络 数据。我们继续对这些调查进行修改版本,以追踪这些信念如何转化为 新冠肺炎。与此同时,我们开发了一种基于分区人群的 COVID-19 模型,该模型对 传播以及 NPI 强度和时间对健康和经济成果的影响。我们建议 扩展我们当前的分区 PBM,并根据纵向调查建立新的个人级 ABM。 我们将进行为期四年的纵向面板调查,构建决策的实证行为模型 保持社交距离,采取减少传播的措施(例如戴口罩)并接种疫苗。这 信息将与我们现有的合成网络数据集相结合,使我们能够构建个人级别 美国代表性城市中 COVID-19 传播的 ABM,与我们的流感 ABM 相结合。该模型将 捕捉个人行为如何影响宏观层面的疾病传播以及流感和 COVID-19 可以互动。来自我们个人级模型的见解和数据将用于通知和参数化自适应 我们的隔间级别模型中的行为,允许在美国一系列州之间进行政策比较。在 此外,我们将考虑哪些政策对关键行为和技术不确定性具有稳健性,例如 针对感知风险以及疫苗接种时机和有效性而发生的行为改变程度。最后, 我们将开发基于网络的交互式工具,以便在不同的环境中探索和比较不同的政策 各种潜在的未来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Parker其他文献

Andrew Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Parker', 18)}}的其他基金

Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
  • 批准号:
    10678677
  • 财政年份:
    2021
  • 资助金额:
    $ 56.79万
  • 项目类别:
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
  • 批准号:
    10365006
  • 财政年份:
    2021
  • 资助金额:
    $ 56.79万
  • 项目类别:
Modeling the Coupled Dynamics of Influenza Transmission and Vaccination Behavior
流感传播和疫苗接种行为的耦合动力学建模
  • 批准号:
    9217563
  • 财政年份:
    2016
  • 资助金额:
    $ 56.79万
  • 项目类别:

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neuroanatomical pathways of the mouse olfactory tubercle and odor-induced adaptive behaviors
小鼠嗅结节的神经解剖通路和气味诱导的适应性行为
  • 批准号:
    16K18377
  • 财政年份:
    2016
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Effects of the Video Self-Modeling on Adaptive Behaviors of Students with Autism Spectrum Disorders
视频自我塑造对自闭症谱系障碍学生适应性行为的影响
  • 批准号:
    22531069
  • 财政年份:
    2010
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BIC: EMT: Cooperative and Adaptive Behaviors By Molecular Robots
BIC:EMT:分子机器人的合作和适应性行为
  • 批准号:
    0523317
  • 财政年份:
    2005
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Continuing Grant
Adaptive behaviors emerged by functional structures in interaction networks
交互网络中功能结构出现的适应性行为
  • 批准号:
    17075007
  • 财政年份:
    2005
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
  • 批准号:
    3025358
  • 财政年份:
    1986
  • 资助金额:
    $ 56.79万
  • 项目类别:
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
  • 批准号:
    3025357
  • 财政年份:
    1984
  • 资助金额:
    $ 56.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了