Processing of TGFbeta as a mechanism for precise temporal orchestration in long term memory formation
TGFbeta 的处理作为长期记忆形成中精确时间编排的机制
基本信息
- 批准号:10490826
- 负责人:
- 金额:$ 3.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAfferent NeuronsAnimal ModelAplysiaBehavioralBindingBiological AssayBiological ModelsBrainCREBBP geneCRISPR/Cas technologyClinicalComplexDepositionDevelopmentElectrophysiology (science)ElementsEnvironmentEventExtracellular MatrixFamilyGangliaGene ExpressionGoalsGrowth FactorHeartHumanImmediate-Early GenesIndividualKnock-outLaboratoriesLeadLearningLigandsLongitudinal StudiesMammalsMediatingMediator of activation proteinMemoryModernizationMolecularMonitorNeuraxisNeurobiologyNeurodegenerative DisordersNeurosciencesNuclearPathogenesisPatternPlayPositioning AttributePreparationProcessProductionPropertyProteinsProteolysisRegulationRoleSignal TransductionSmad ProteinsSpecificityStimulusStructureSynaptic plasticitySystemTGF beta type III receptorTestingTimeTrainingTransforming Growth Factor betaTransforming Growth Factor beta Receptorsanalogdevelopmental plasticityexperimental studyimmunocytochemistrylong term memorynervous system disordernovelpresynapticresponsetargeted treatmenttranscription factor
项目摘要
PROJECT SUMMARY
One of the great challenges of modern neuroscience is understanding the detailed molecular
choreography required for the formation of lasting memories in the brain. At the heart of this challenge lies a
complex network of molecular processes that must be integrated at precise timepoints to create a cellular
environment favorable for long-term memory (LTM) formation. However, the neurobiological processes and the
precise timing of their signaling cascades during LTM formation remain to be fully understood. One family of
molecular processes that could contribute to the temporal requirements for LTM formation is growth factor (GF)
signaling. GFs, canonically viewed as regulators of developmental plasticity, are becoming widely appreciated
as key mediators of synaptic plasticity and memory in adults. Recent findings from our laboratory show that a
specific GF, transforming growth factor beta (TGFβ), provides a unique mechanism that plays a major role in
the temporal processing underlying LTM. This project will test the novel hypothesis that TGFβ’s signaling
cascade can act as a “molecular timekeeper” through the integration of its activity, contributing to the temporal
computations necessary for LTM formation. To this end, I will examine three distinct components of the TGFβ
signaling cascade during LTM: (i) TGFβ-ligands, (ii) TGFβ-receptors, and (iii) downstream mediator proteins, to
determine how each component uniquely contributes to the temporal processing necessary for LTM formation.
In Aim I, I will examine how synthesis and/or release of TGFβ-ligands could each be key events whose timing
is necessary for LTM formation. In Aim II, I will study how TGFβ ligand activation, through proteolysis and
changes at the level of TGFβ-receptors, may be critical time-keeping events. Finally, in Aim III, I will assess
whether TGFβ-initiated intracellular singling via Smad proteins is necessary for LTM formation. For all
experiments, I will use a powerful paradigm developed to study LTM in the marine mollusk Aplysia. This
paradigm induces LTM for sensitization after only two trials, but only if the trials are separated by a specific,
highly constrained time window of 45 minutes. This minimal system separates the initiating stimulus (Trial 1)
from the repeated stimulus (Trial 2), providing unparalleled access to the specific temporal interactions
underlying LTM formation. Finally, this project has the potential to contribute significant impact from a clinical
perspective, as these findings will have direct implications for understanding human memory formation under
healthy conditions and when compromised in neurological disease. Since TGFβ’s signaling cascade has been
implicated in the pathogenesis of many of these neurological disorders, understanding when and how TGFβ
acts in the brain during memory formation could provide novel avenues for developing more effective and
targeted therapeutics.
项目摘要
现代神经科学的巨大挑战之一是了解详细的分子
形成大脑持久记忆所需的编舞。这个挑战的核心是
必须在精确时间点集成的分子过程的复杂网络才能创建细胞
有利于长期记忆(LTM)形成的环境。但是,神经生物学过程和
LTM形成过程中其信号级联的精确时机尚待充分理解。一个家庭
可能有助于LTM形成的临时要求的分子过程是生长因子(GF)
信号。 GFS,被视为发育可塑性的调节剂,被广泛赞赏
作为成人突触可塑性和记忆的关键介体。我们实验室的最新发现表明
特定的GF,转化生长因子β(TGFβ),提供了独特的机制,在
LTM的临时处理。该项目将测试TGFβ信号传导的新假设
级联可以通过其活动的整合充当“分子计时器”,从而有助于临时
LTM形成所需的计算。为此,我将检查TGFβ的三个不同组成部分
LTM期间的信号传导级联反应:(i)TGFβ-rigands,(ii)TGFβ受体和(iii)下游介质蛋白,至
确定每个组件如何唯一贡献LTM形成所需的临时处理。
在AIM I中,我将检查TGFβ-配体的合成和/或释放如何是关键事件
LTM形成是必需的。在AIM II中,我将研究TGFβ配体激活,蛋白水解和
TGFβ受体水平的变化可能是关键的时间保存事件。最后,在AIM III中,我将评估
LTM形成是否需要通过SMAD蛋白通过TGFβ引起的细胞内单单。所有人
实验,我将使用开发的强大范式来研究海洋软体动物中的LTM。这
范式仅在两次试验后引起LTM的灵敏度,但前提
高度约束的时间窗口为45分钟。这个最小的系统将发射刺激分开(试验1)
从重复的刺激(试验2),提供对特定临时相互作用的无与伦比的访问
基础LTM组。最后,该项目有潜力从临床上产生重大影响
观点,因为这些发现将对理解人类记忆形成的直接影响
健康状况以及在神经系统疾病中受到损害时。由于TGFβ的信号传导级联一直是
在许多此类神经系统疾病的发病机理中实施,了解TGFβ何时以及如何
记忆形成过程中大脑中的行为可以为发展更有效和
靶向疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paige Miranda其他文献
Paige Miranda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
- 批准号:
10774563 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Cardiac Autonomic Activation In Atrial Fibrillation Triggers And Substrate
心房颤动的心脏自主激活触发因素和基质
- 批准号:
10636441 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别: