Neural-Epithelial Encoding of Airway Senses
气道感觉的神经上皮编码
基本信息
- 批准号:10490251
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AblationAfferent NeuronsAirAtlasesAwardBiological ModelsBiologyBrainBreathingCatalogingCell physiologyCellsChemicalsCodeCommunicationCuesDataDetectionEnvironmentEpithelialEpithelial CellsEsthesiaGasesGeneticGoalsHypoxiaImageImmunologyIn SituInflammatoryInhalationIon ChannelIrritantsKnockout MiceLogicLungMeasuresMediatingMentorshipMethodologyMicroscopyMolecularMusNeural PathwaysNeuroendocrine CellNeuroepithelialNeuroepithelial BodiesNeuronsNeurosciencesOrganPathway interactionsPhysiologicalPhysiologyPiezo 2 ion channelPopulationPositioning AttributePreparationPropertyRegulationReporterResearchRespirationRespiratory SystemRespiratory physiologyRoleSecretory CellSensorySensory ReceptorsSentinelSignal TransductionSiteSpecialized Epithelial CellStimulusStretchingSurveysTaste PerceptionTissuesTrainingTransducersVagus nerve structureViralWorkairway epitheliumbody systemcell typecellular transductiondesigner receptors exclusively activated by designer drugshormonal signalsimaging approachin vivoin vivo Modelinsightlung volumemechanical stimulusmouse geneticsnerve supplyneural circuitneuronal circuitryneurosensoryneurotransmitter releaseoptogeneticspreservationprogramspulmonary functionrelating to nervous systemremote controlrespiratoryrespiratory challengerespiratory reflexresponsesensorsensory inputsensory stimulusstressortooltranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Airway sensory neurons communicate physiological and environmental cues to the brain, including inhaled
gases, irritants, and lung volume. Subtypes of sensory neurons cooperate with specialized epithelial cells to form
discrete sensory modules, with the potential to regulate neighboring cells and tissue function. Yet, little is
understood about the properties of many neural-epithelial sensory sites and their underlying signaling
mechanisms. Understanding the underlying pathways of neural-epithelial communication in the airways will offer
new insights into the physiological control of respiration and answer fundamental questions about neural-
epithelial interactions. Sensory innervation of the respiratory tract is largely derived from the vagus nerve, the
major sensory connection between the internal organ systems and the brain. In the lung, clusters of
neuroendocrine cells termed neuroepithelial bodies (NEBs) are innervated by vagal sensory neurons marked by
P2ry1-ires-cre, providing a neuro-epithelial conduit to modulate pulmonary activity. NEBs have been proposed
to detect various stimuli, including hypoxia, airway stretch, and inflammatory cues, but little is known about the
diversity, response properties, and physiological functions of NEB cells.
This proposal will interrogate NEB sensory properties by a) gaining access to NEBs using mouse genetic tools,
b) imaging approaches to directly interrogate the responses of NEBs in situ, c) cataloging the sensory repertoire
of NEBs, and d) state-of-the-art neuroscience tools to dissect the underlying vagal neurocircuitry. These powerful
tools will allow me to selectively activate and ablate NEBs in vivo, remotely control associated vagal sensory
neurons, target candidate molecular transducers, and measure how these perturbations regulate respiratory
physiology. My independent research aims will provide mechanistic insight into defining both the molecular and
cellular components that orchestrate sensory responses to airway stimuli, thereby helping illuminate the role of
NEBs in pulmonary physiology.
My preliminary data and the environment in the Liberles Lab provide strong evidence for the feasibility and
validity of this approach, which combines cellular and in vivo model systems. The Liberles Lab has discovered
distinct subsets of vagal sensory neurons, profiled a “vagal atlas” to identify unique neuronal subtypes, and
extensive expertise in surveying sensory biology in airways. This proposed training plan supports my long-term
goal to expand our understanding of sensory neural circuits and how they transduce distinct stimuli, thereby
providing a new mechanistic framework for interactions between neurons and ‘sentinel’ cells, like NEBs. The
proposed experimental approaches build on my background in immunology and cellular physiology with new
training in neuroscience and pulmonary physiology from my outstanding mentorship team. This award will further
support my professional and scientific training as I develop a unique and independent research program.
项目总结/摘要
呼吸道感觉神经元将生理和环境线索传达给大脑,包括吸入
气体、刺激物和肺容量。感觉神经元的亚型与特化上皮细胞合作形成
离散的感觉模块,具有调节邻近细胞和组织功能的潜力。然而,
了解许多神经上皮感觉部位的特性及其潜在的信号传导
机制等了解气道中神经上皮细胞通讯的潜在途径将提供
对呼吸生理控制的新见解,并回答有关神经的基本问题,
上皮相互作用呼吸道的感觉神经支配主要来源于迷走神经,
内部器官系统和大脑之间的主要感觉联系。在肺部,
被称为神经上皮小体(NEB)的神经内分泌细胞受迷走神经感觉神经元支配,
p2 ry 1-ires-cre,提供调节肺活动的神经上皮管道。已提议设立NEB
检测各种刺激,包括缺氧,气道伸展和炎症线索,但对这些刺激知之甚少。
NEB细胞的多样性、反应特性和生理功能。
该提案将通过a)使用小鼠遗传工具获得NEB,
B)直接询问原位NEB反应的成像方法,c)对感觉库进行编目
和d)最先进的神经科学工具来解剖潜在的迷走神经回路。这些强大
工具将允许我在体内选择性地激活和消融NEB,远程控制相关的迷走神经感觉
神经元,目标候选分子转换器,并测量这些扰动如何调节呼吸
physiology.我的独立研究目标将提供机制的见解,以定义分子和
协调对气道刺激的感觉反应的细胞成分,从而帮助阐明
肺生理学中的NEB。
我的初步数据和Liberles实验室的环境为可行性提供了有力的证据,
这种方法的有效性,它结合了细胞和体内模型系统。利伯勒斯实验室发现
迷走神经感觉神经元的不同子集,描绘“迷走神经图谱”以识别独特的神经元亚型,以及
在调查气道感觉生物学方面拥有丰富的专业知识。这份培训计划支持我的长期发展。
我们的目标是扩大我们对感觉神经回路的理解,以及它们如何识别不同的刺激,从而
为神经元和“哨兵”细胞(如NEB)之间的相互作用提供了一个新的机制框架。的
提出的实验方法建立在我的免疫学和细胞生理学背景上,
在神经科学和肺生理学方面的培训。该奖项将进一步
支持我的专业和科学培训,因为我开发了一个独特的和独立的研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Stephen Schappe其他文献
Michael Stephen Schappe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Stephen Schappe', 18)}}的其他基金
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 6.76万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 6.76万 - 项目类别:
Discovery Grants Program - Individual