Revolutionizing Spacecraft Thermal Control with Dynamic Graphene Radiators: SmartSat

利用动态石墨烯散热器彻底改变航天器热控制:SmartSat

基本信息

  • 批准号:
    10098641
  • 负责人:
  • 金额:
    $ 269.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    EU-Funded
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Satellites face numerous technological challenges due to the extreme temperature variations they experience while orbiting the Earth. These temperature fluctuations pose a significant risk to the delicate electronic and optical systems within the satellite, as overheating or overcooling can cause catastrophic damage. To maintain thermal stability, a satellite's heat controller must balance venting the internal heat generated by onboard systems with insulating the craft from solar radiation and continuously radiating the heat. This task is particularly challenging since thermal radiation is the only means to dissipate excess heat from the satellite. The sun-facing side of a satellite can be up to +200°C hotter than the side exposed to the cold vacuum of space, resulting in a rapid temperature change of >200°C when the satellite enters Earth's shadow. Traditional temperature control systems, such as passive radiators, are designed to reflect solar radiation and emit infrared light through thermal radiation. However, these radiators cannot be switched off or adjusted according to the satellite's position relative to the Earth and the Sun. This limitation can lead to rapid cooling of internal systems and components when the satellite enters Earth's shadow, causing temperature-induced stress and damage to delicate electronics. Engineers utilize large but delicate solar shields, bulky thermal louvres, heat pipes, and heaters to manage these temperature extremes. However, these thermal control systems are not only heavy but also consume a significant amount of available power. This increased weight and power consumption reduce the payload capacity and overall efficiency of the satellite. An ideal thermal control system would adapt to changing thermal conditions in real-time, maintaining optimal temperatures for the satellite's electronic systems and components. By modulating its heat dissipation capabilities based on the satellite's position, an innovative adaptive thermal management system would not only improve satellite performance and reliability but also significantly extend operational lifespan, making satellites more cost-effective and efficient for manufacturers and operators. As the space market experiences a critical shift with decreasing launch costs and increasing launch frequency, satellite manufacturers and operators are under pressure to optimize efficiency and maintain profitability. Consequently, there is an urgent need for a lightweight, low-cost, and low-power consumption solution to enhance satellite efficiency (e.g., by increasing data throughput while reducing payload and power consumption) and enable the long-lasting use of small satellites. Such an innovative solution would make previously unattainable projects feasible and usher in a new era of satellite technology.
由于在绕地球轨道运行时所经历的极端温度变化,卫星面临着许多技术挑战。这些温度波动对卫星内精密的电子和光学系统构成重大风险,因为过热或过冷可能造成灾难性的损坏。为了保持热稳定性,卫星的热控制器必须平衡排放机载系统产生的内部热量,使航天器免受太阳辐射并持续辐射热量。这项任务特别具有挑战性,因为热辐射是从卫星散发多余热量的唯一手段。卫星朝向太阳的一面可能比暴露在太空冷真空中的一面温度高出200 ° C,导致卫星进入地球阴影时温度迅速变化>200°C。传统的温度控制系统,如被动式散热器,设计用于反射太阳辐射并通过热辐射发射红外光。然而,这些辐射器不能根据卫星相对于地球和太阳的位置关闭或调整。当卫星进入地球阴影时,这种限制可能导致内部系统和部件快速冷却,从而导致温度引起的应力和对精密电子设备的损坏。工程师们利用大而精致的太阳能屏蔽,笨重的热百叶窗,热管和加热器来管理这些极端温度。然而,这些热控制系统不仅笨重,而且消耗大量的可用功率。这种增加的重量和功耗降低了卫星的有效载荷能力和总体效率。一个理想的热控系统将实时适应不断变化的热条件,为卫星的电子系统和部件保持最佳温度。通过根据卫星的位置调整其散热能力,创新的自适应热管理系统不仅可以提高卫星的性能和可靠性,而且还可以大大延长运行寿命,使卫星对制造商和运营商来说更具成本效益和效率。随着航天市场经历关键转变,发射成本降低,发射频率增加,卫星制造商和运营商面临着优化效率和保持盈利能力的压力。因此,迫切需要一种轻量、低成本和低功耗的解决方案来提高卫星效率(例如,通过增加数据吞吐量,同时减少有效载荷和功耗),并使小型卫星能够长期使用。这种创新的解决办法将使以前无法实现的项目成为可能,并开创卫星技术的新时代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship

相似海外基金

Investigating the Earth's magnetosphere using multi-spacecraft measurements
使用多航天器测量研究地球磁层
  • 批准号:
    2881734
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
CAREER: End-to-End Active Region-based Heliospheric Forecasting System Using Multi-spacecraft Data and Machine Learning
职业:使用多航天器数据和机器学习的基于端对端活动区域的日光层预报系统
  • 批准号:
    2240022
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Continuing Grant
Development and validation of innovative, near real-time analytical tools to enable mitigation of contamination within cleanrooms of the UK spacecraft
开发和验证创新的近实时分析工具,以减轻英国航天器洁净室内的污染
  • 批准号:
    ST/X005356/1
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Training Grant
Space performance correction for micro gas jet nozzles contributing to precise position control of spacecraft
微型气体喷嘴的空间性能校正有助于航天器的精确位置控制
  • 批准号:
    23K19099
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Spacecraft Charging Instrument Development
航天器充电仪器开发
  • 批准号:
    ST/Y004752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Research Grant
Definition of a servicable, reusable solar panel for sustainable spacecraft
用于可持续航天器的可维修、可重复使用的太阳能电池板的定义
  • 批准号:
    10073011
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant for R&D
Data-driven thermal analysis aiming for high-precision digital twin of spacecraft thermal systems
数据驱动的热分析,旨在实现航天器热系统的高精度数字孪生
  • 批准号:
    22KJ0252
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on Data-Driven Approaches for Spacecraft Trajectory Design Near Libration Points
航天器近振动点轨迹设计的数据驱动方法研究
  • 批准号:
    23KJ0807
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spacecraft Heat Shield Material Testing in Plasma Flows
等离子流中的航天器隔热材料测试
  • 批准号:
    2887298
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Study on the formation environment and thermal history of long period comets using numerical simulation and observation data obtained by spacecraft
利用数值模拟和航天器观测数据研究长周期彗星的形成环境和热历史
  • 批准号:
    22KJ0989
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了