Revolutionizing Spacecraft Thermal Control with Dynamic Graphene Radiators: SmartSat

利用动态石墨烯散热器彻底改变航天器热控制:SmartSat

基本信息

  • 批准号:
    10098641
  • 负责人:
  • 金额:
    $ 269.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    EU-Funded
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Satellites face numerous technological challenges due to the extreme temperature variations they experience while orbiting the Earth. These temperature fluctuations pose a significant risk to the delicate electronic and optical systems within the satellite, as overheating or overcooling can cause catastrophic damage. To maintain thermal stability, a satellite's heat controller must balance venting the internal heat generated by onboard systems with insulating the craft from solar radiation and continuously radiating the heat. This task is particularly challenging since thermal radiation is the only means to dissipate excess heat from the satellite. The sun-facing side of a satellite can be up to +200°C hotter than the side exposed to the cold vacuum of space, resulting in a rapid temperature change of >200°C when the satellite enters Earth's shadow. Traditional temperature control systems, such as passive radiators, are designed to reflect solar radiation and emit infrared light through thermal radiation. However, these radiators cannot be switched off or adjusted according to the satellite's position relative to the Earth and the Sun. This limitation can lead to rapid cooling of internal systems and components when the satellite enters Earth's shadow, causing temperature-induced stress and damage to delicate electronics. Engineers utilize large but delicate solar shields, bulky thermal louvres, heat pipes, and heaters to manage these temperature extremes. However, these thermal control systems are not only heavy but also consume a significant amount of available power. This increased weight and power consumption reduce the payload capacity and overall efficiency of the satellite. An ideal thermal control system would adapt to changing thermal conditions in real-time, maintaining optimal temperatures for the satellite's electronic systems and components. By modulating its heat dissipation capabilities based on the satellite's position, an innovative adaptive thermal management system would not only improve satellite performance and reliability but also significantly extend operational lifespan, making satellites more cost-effective and efficient for manufacturers and operators. As the space market experiences a critical shift with decreasing launch costs and increasing launch frequency, satellite manufacturers and operators are under pressure to optimize efficiency and maintain profitability. Consequently, there is an urgent need for a lightweight, low-cost, and low-power consumption solution to enhance satellite efficiency (e.g., by increasing data throughput while reducing payload and power consumption) and enable the long-lasting use of small satellites. Such an innovative solution would make previously unattainable projects feasible and usher in a new era of satellite technology.
由于它们在绕地球绕着地球时经历的极端温度变化,卫星面临许多技术挑战。这些温度波动对卫星内的细腻电子和光学系统构成了重大风险,因为过热或过冷可能会造成灾难性损害。为了维持热稳定性,卫星的热控制器必须平衡在机上系统产生的内部热量,并从太阳辐射中隔热并连续辐射热量。此任务尤其具有挑战性,因为热辐射是从卫星中消耗多余热量的唯一手段。卫星的阳光面可能比暴露于空间冷真空的一侧高度高200°C,当卫星进入地球阴影时,迅速变化> 200°C。传统的温度控制系统,例如被动散热器,旨在通过热辐射反射太阳辐射和发射红外光。但是,这些辐射器不能根据卫星相对于地球和太阳的卫星位置关闭或调整。当卫星进入地球阴影时,这种局限性会导致内部系统和组件的快速冷却,从而导致温度引起的压力和对娇嫩电子产品的损害。工程师利用大型但精致的太阳能盾牌,笨重的热卢瓦斯,加热管和加热器来管理这些极端温度。但是,这些热控制系统不仅很重,而且还消耗了大量的可用功率。这种增加的体重和功耗降低了卫星的有效载荷能力和整体效率。理想的热控制系统将适应实时变化的热条件,从而保持卫星电子系统和组件的最佳温度。通过根据卫星的位置调节其热量耗散功能,创新的自适应热管理系统不仅可以提高卫星性能和可靠性,而且还可以显着延长运行寿命,从而使卫星对制造商和运营商的成本有效和有效。随着太空市场经历了临界变化,随着发射成本的降低和发射频率的增加,卫星制造商和运营商承受着优化效率和可维护性的压力。因此,迫切需要使用轻巧,低成本和低功率消耗解决方案来提高卫星效率(例如,通过增加数据吞吐量,同时减少有效载荷和功耗),并可以长期使用小型卫星。这样的创新解决方案将使以前无法实现的项目可行,并引入卫星技术的新时代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Metal nanoparticles entrapped in metal matrices.
  • DOI:
    10.1039/d1na00315a
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
  • DOI:
    10.1007/978-3-662-55754-9_2
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
  • DOI:
    10.3969/j.issn.1674-764x.2010.02.010
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Studentship

相似海外基金

Data-driven thermal analysis aiming for high-precision digital twin of spacecraft thermal systems
数据驱动的热分析,旨在实现航天器热系统的高精度数字孪生
  • 批准号:
    22KJ0252
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study on the formation environment and thermal history of long period comets using numerical simulation and observation data obtained by spacecraft
利用数值模拟和航天器观测数据研究长周期彗星的形成环境和热历史
  • 批准号:
    22KJ0989
  • 财政年份:
    2023
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thermal characterization of a high thermal conductive actuator and application to variable emittance device for spacecraft
高导热执行器的热特性及其在航天器可变发射装置中的应用
  • 批准号:
    20K22407
  • 财政年份:
    2020
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Proposal of periodic-heating heterodyne interferometry and evaluation of nano-scale thermal dimensional stability of low thermal expansion material for spacecraft
周期性加热外差干涉技术的提出及航天器低热膨胀材料纳米级热尺寸稳定性评价
  • 批准号:
    16K14509
  • 财政年份:
    2016
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Modeling and fabriction of metallic thermal protection systems (MTPS) for FBG sensors based spacecraft vehicles
基于 FBG 传感器的航天器金属热保护系统 (MTPS) 的建模和制造
  • 批准号:
    417709-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 269.79万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了