CAREER: End-to-End Active Region-based Heliospheric Forecasting System Using Multi-spacecraft Data and Machine Learning

职业:使用多航天器数据和机器学习的基于端对端活动区域的日光层预报系统

基本信息

  • 批准号:
    2240022
  • 负责人:
  • 金额:
    $ 69.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

Solar flares are one of the most impactful solar eruptive activities that occur. They are due to magnetic reconnection, where highly fluctuating magnetic fields collapse to a lower energy state releasing energy into space. This project focuses on prediction of solar flares through using machine learning techniques on solar observations. The broader impacts include public outreach to impact students at all educational levels in Utah from middle-school to college level by organizing a yearly space-weather panel discussion on Utah Public Radio. Indigenous American student research experiences will be funded every summer. In addition, the PI, an early career woman scientist, will develop a new applied laboratory component to her applied data mining classes. The research has the potential to increase national security and US competitiveness by lessening the potential risk related to defense and space exploration missions from space weather events. Active region magnetic field parameters, extracted from solar photospheric vector magnetograms, have been routinely used to predict solar flare occurrences. Despite recent advancements in solar flare prediction, there are significant barriers to efficiently combine different space-borne instruments’ observations spanning multiple solar cycles, to train robust and unbiased solar flare models. This project is a five-year research program that aims at leveraging state-of-the-art machine learning models to discover the driving factors of extreme solar flares in different solar cycles, assess the impact of active regions’ properties on solar transient events, and transfer the learned knowledge to other models of the heliosphere. To achieve the vision, the project will develop a high-spatial resolution active regions vector magnetogram dataset, that spans two solar cycles, based on three magnetographs on-board NASA’s Solar Dynamics Observatory, Solar and Heliospheric Observatory and Hinode (Thrust 1). The new high- quality and high-resolution magnetic field maps will allow the study of small-scale active regions’ physical characteristics that were never examined in the context of solar flare prediction. The project will generate comprehensive magnetic field parameters multivariate time series (MVTS) dataset useful to both Data Science and Space Weather communities for modeling various solar phenomena (Thrust 2). Finally, the project will build an accurate and robust solar flare prediction model and use the learned predictive patterns to initialize other solar events predictive models (Thrust 3). The end goal of this CAREER proposal, is to leverage the cross-field of applied ML methods in the field of astrophysics to improve our understanding of the physical attributes of active regions that drive different types of solar flares, and enable scientists to perform comparative, reproducible, and data-driven studies on the prediction of solar flare events. One of the by-products of this research will be an unprecedented comprehensive solar flare catalog supplemented with parent active regions’ magnetic field parameters’ multivariate time series data that will be freely available through Application Programming Interface (API) for its wide potential usage (e.g., conduct statistical studies, train ML-based and physics-based models).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳耀斑是最具影响力的太阳爆发活动之一。它们是由于磁场重联,其中高度波动的磁场坍缩到较低的能量状态,将能量释放到太空中。该项目的重点是通过在太阳观测中使用机器学习技术来预测太阳耀斑。更广泛的影响包括通过在犹他州公共广播电台组织年度空间气象小组讨论,对犹他州从中学到大学的所有教育水平的学生进行公众宣传。每年夏天都会资助美国原住民学生的研究经验。此外,PI,一个早期的职业女性科学家,将开发一个新的应用实验室组成部分,她的应用数据挖掘类。这项研究有可能通过减少太空天气事件对国防和太空探索任务的潜在风险,提高国家安全和美国的竞争力。从太阳光球矢量磁图中提取的活动区磁场参数已被常规地用于预测太阳耀斑的发生。尽管最近在太阳耀斑预测方面取得了进展,但要有效地将跨越多个太阳活动周期的不同空间仪器的观测结果联合收割机结合起来,以训练稳健和无偏见的太阳耀斑模型,仍然存在重大障碍。该项目是一个为期五年的研究计划,旨在利用最先进的机器学习模型来发现不同太阳周期中极端太阳耀斑的驱动因素,评估活动区域属性对太阳瞬态事件的影响,并将学到的知识转移到日光层的其他模型。为实现这一愿景,该项目将根据美国航天局太阳动力学观测台、太阳和日光层观测台和日出(推力1)上的三个磁象仪,开发一个跨越两个太阳周期的高空间分辨率活动区矢量磁象数据集。新的高质量和高分辨率磁场图将使人们能够研究小规模活动区域的物理特征,这些特征在太阳耀斑预测中从未得到过研究。该项目将生成对数据科学和空间气象界有用的综合磁场参数多变量时间序列数据集,用于模拟各种太阳现象(推力2)。最后,该项目将建立一个准确和强大的太阳耀斑预测模型,并使用学习到的预测模式来初始化其他太阳事件预测模型(推力3)。该CAREER提案的最终目标是利用天体物理学领域应用ML方法的跨领域,以提高我们对驱动不同类型太阳耀斑的活动区域物理属性的理解,并使科学家能够对太阳耀斑事件的预测进行比较,可重复和数据驱动的研究。这项研究的副产品之一将是一个前所未有的全面的太阳耀斑目录,补充了母活动区的“磁场参数”多变量时间序列数据,这些数据将通过应用程序编程接口(API)免费提供,以获得其广泛的潜在用途(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motif Alignment for Time Series Data Augmentation
时间序列数据增强的基序对齐
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bahri, Omar;Li, Peiyu;Filali Boubrahimi, Soukaına;Hamdi, Shah Muhammad
  • 通讯作者:
    Hamdi, Shah Muhammad
Attention-based Counterfactual Explanation for Multivariate Time Series
基于注意力的多元时间序列反事实解释
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Peiyu;Bahri, Omar;Filali Boubrahimi, Soukaına;Hamdi, Shah Muhammad
  • 通讯作者:
    Hamdi, Shah Muhammad
CELS: Counterfactual Explanations for Time Series Data via Learned Saliency Maps
Improving Solar Energetic Particle Event Prediction through Multivariate Time Series Data Augmentation
通过多元时间序列数据增强改进太阳能粒子事件预测
  • DOI:
    10.3847/1538-4365/ad1de0
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hosseinzadeh, Pouya;Filali Boubrahimi, Soukaina;Hamdi, Shah Muhammad
  • 通讯作者:
    Hamdi, Shah Muhammad
Multiloss-Based Optimization for Time Series Data Augmentation
基于多重损失的时间序列数据增强优化
  • DOI:
    10.1109/bigdata59044.2023.10386614
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bahri, Omar;Li, Peiyu;Boubrahimi, Soukaïna Filali;Hamdi, Shah Muhammad
  • 通讯作者:
    Hamdi, Shah Muhammad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soukaina Filali Boubrahimi其他文献

Spatiotemporal Data Augmentation of MODIS‐Landsat Water Bodies Using Adversarial Networks
使用对抗网络增强 MODIS-Landsat 水体时空数据
  • DOI:
    10.1029/2023wr036342
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Soukaina Filali Boubrahimi;Ashit Neema;Ayman Nassar;Pouya Hosseinzadeh;S. M. Hamdi
  • 通讯作者:
    S. M. Hamdi
Discord-based counterfactual explanations for time series classification
  • DOI:
    10.1007/s10618-024-01028-9
  • 发表时间:
    2024-08-07
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Omar Bahri;Peiyu Li;Soukaina Filali Boubrahimi;Shah Muhammad Hamdi
  • 通讯作者:
    Shah Muhammad Hamdi
An Analysis of Mpox Communication on Reddit vs Twitter During the 2022 Mpox Outbreak
  • DOI:
    10.1007/s13178-024-01058-4
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Cory J. Cascalheira;Kelsey Corro;Chenglin Hong;Taylor K. Rohleen;Ollie Trac;Mehrab Beikzadeh;Jillian R. Scheer;Shah Muhammad Hamdi;Soukaina Filali Boubrahimi;Ian W. Holloway
  • 通讯作者:
    Ian W. Holloway

Soukaina Filali Boubrahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soukaina Filali Boubrahimi', 18)}}的其他基金

Combining Physics and Machine Learning-based Models for Full-Energy-Range Solar Energetic Particles Events Prediction
结合物理和基于机器学习的模型进行全能量范围太阳能高能粒子事件预测
  • 批准号:
    2204363
  • 财政年份:
    2022
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant

相似国自然基金

真菌特异的内吞作用相关蛋白End3发挥作用的结构研究
  • 批准号:
    32000859
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
从PBMC-β-END-μ-阿片受体途径探讨华蟾素治疗癌痛的外周机制
  • 批准号:
    81173612
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
Establishing feasibility for safe, sustainable transportation of end-of-life EV batteries for recycling to Cathode Active material and reuse in a battery supply chain.
建立安全、可持续运输报废电动汽车电池以回收为阴极活性材料并在电池供应链中重复使用的可行性。
  • 批准号:
    10077805
  • 财政年份:
    2023
  • 资助金额:
    $ 69.2万
  • 项目类别:
    BEIS-Funded Programmes
CAM-EV - Development of new processes to recover critical metals from multi-chemistry, end-of-life EV batteries and convert them into tailored cathode-active materials
CAM-EV - 开发新工艺,从多化学物质、报废电动汽车电池中回收关键金属,并将其转化为定制的阴极活性材料
  • 批准号:
    10048761
  • 财政年份:
    2023
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Collaborative R&D
Low Cost Active End-of-Service-Life Indicator for Respirator Cartridges
低成本主动式呼吸器滤毒盒使用寿命终止指示器
  • 批准号:
    9906094
  • 财政年份:
    2019
  • 资助金额:
    $ 69.2万
  • 项目类别:
Characterization of conformational dynamics of the active end of amyloid fibril to elucidate mechanisms underlying the fibril elongation
淀粉样原纤维活性端构象动力学的表征,以阐明原纤维伸长的机制
  • 批准号:
    23870043
  • 财政年份:
    2011
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A New Generation of All-Carbon Bridged Bimetallic Complexes featuring Redox-Active, Group 6 Metal End-Caps.
新一代全碳桥双金属配合物,具有氧化还原活性、第 6 族金属端盖。
  • 批准号:
    EP/E02582X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Research Grant
A New Generation of All-Carbon Bridged Bimetallic Complexes featuring Redox-Active, Group 6 Metal End-Caps.
新一代全碳桥双金属配合物,具有氧化还原活性、第 6 族金属端盖。
  • 批准号:
    EP/E025544/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Research Grant
A High End Computing project investigating the dissolution of bio-active phosphate glasses
研究生物活性磷酸盐玻璃溶解的高端计算项目
  • 批准号:
    EP/C532767/1
  • 财政年份:
    2006
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Research Grant
HEC: Active Storage Networks for High End Computing
HEC:用于高端计算的主动存储网络
  • 批准号:
    0621448
  • 财政年份:
    2006
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了