Multi-omics Gene Network Identification (Project 4)
多组学基因网络识别(项目4)
基本信息
- 批准号:10493708
- 负责人:
- 金额:$ 44.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmygdaloid structureAnimal ModelArchitectureArtificial IntelligenceAutopsyBrainChIP-seqChromosome MappingComplexCustomDNA MethylationDataDiseaseElectronic Health RecordGene Expression RegulationGenesGeneticGenetic EpistasisGenomeGenotypeGenotype-Tissue Expression ProjectGoalsHeritabilityHigh Performance ComputingHumanHuman GenomeIndividualInternationalJointsKnowledgeLaboratoriesMapsMethodsModelingMorbidity - disease rateMultiomic DataMusNamesNetwork-basedNeurobiologyNucleus AccumbensOpiate AddictionOutcomeOutputPrefrontal CortexProcessPublic DomainsRattusRegulator GenesRodent ModelSignal TransductionSourceStudy modelsSystemSystems BiologyTestingTissuesTreesUnited StatesValidationVariantWalkingaddictionbasebig-data sciencebrain tissuecase controlcell typedatabase of Genotypes and Phenotypesgene networkgene regulatory networkgenetic variantgenome wide association studygenome-widegenomic locushuman datahuman modelimprovedmind controlmortalitymultiple omicsrandom forestsynergismtranscriptome sequencingyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of Project 4 is to discover neurobiologically interpretable gene networks that underlie opioid
addiction (OA) but are otherwise missed by traditional statistical approaches. To achieve this goal, we will
apply our multi-omics, multi-method framework—Gene Network Identification and Integration (GNetII)—to
identify OA-associated gene networks, by capitalizing on P50 data across human and rodent models. GNetII
includes genome-wide epistasis, explainable artificial intelligence, gene network construction, and lines-of-
evidence (LOE) methods. These cornerstone methods enable integration of multiple levels of individual-level
data, and we will specifically integrate large-scale genome-wide association study (GWAS) data in 220,722
living subjects from Project 1 and the Synergy Core, gene regulation data (RNA-sequencing, DNA
methylation, chromatin immunoprecipitation sequencing, and variant genotypes) from multiple addiction-
relevant brain tissues (including prefrontal cortex, nucleus accumbens, and amygdala) from 641 OA case and
control decedents (deceased individuals) from Project 2, experimental mouse and rat model results from
Project 3, and additional public omics data.
OA is a leading cause of preventable morbidity and mortality in the United States, afflicting an
unprecedented number of U.S. adults and youth. OA is highly heritable (~54%). Yet, few genetic loci have
been conclusively identified for OA and related outcomes, and common genetic variant-based heritability
explains only 17% of the variance in OA. We hypothesize that epistasis (i.e., interaction of variants or genes)
contributes to the missing heritability. Applying big data science methods to large-scale GWAS, gene
regulation data in brain tissue, and cross-species data will reveal previously undetected relationships and add
knowledge of the neurobiology underlying addiction. We propose the following specific aims:
Aim 1: Build OA-associated gene networks via genome-wide epistasis.
Aim 2: Build multi-omics networks using postmortem human brain data.
Aim 3: Integrate networks across species to find OA-associated gene networks with multiple LOE.
Analyses will be performed on the powerful high performance computing architectures at the Oak Ridge
National Laboratory which will greatly improve the likelihood of neurobiologically meaningful discoveries. Our
study will capture complex networks across the genome to find previously unknown genes and will help
explain the neurobiological underpinnings for the genetic loci that emerge from across the P50 and the
broader field.
项目总结/摘要
项目4的目标是发现阿片类药物的神经生物学解释的基因网络
成瘾(OA),但在其他方面错过了传统的统计方法。为了实现这一目标,我们将
应用我们的多组学,多方法框架-基因网络识别和整合(GNetII)-
通过利用人类和啮齿动物模型中的P50数据来识别OA相关基因网络。GNetII
包括全基因组上位性、可解释的人工智能、基因网络构建和
证据法(LOE)。这些基础方法使个人层面的多个层面的整合成为可能。
数据,我们将专门整合220,722年的大规模全基因组关联研究(GWAS)数据,
来自项目1和协同核心的活体受试者,基因调控数据(RNA测序,DNA
甲基化、染色质免疫沉淀测序和变异基因型)
641例OA患者的相关脑组织(包括前额叶皮层、杏仁核和杏仁核),
对照死亡动物(死亡个体)来自项目2,实验小鼠和大鼠模型结果来自
项目3和其他公共组学数据。
在美国,OA是可预防的发病率和死亡率的主要原因,
美国成年人和年轻人的数量前所未有。OA具有高度遗传性(约54%)。然而,很少有基因位点
最终确定了OA和相关结局,以及基于常见遗传变异的遗传力
只能解释OA变异的17%我们假设上位性(即,变异体或基因的相互作用)
导致了遗传性缺失将大数据科学方法应用于大规模GWAS,基因
大脑组织中的调控数据,跨物种数据将揭示以前未被发现的关系,并增加
成瘾背后的神经生物学知识。我们提出以下具体目标:
目的1:通过全基因组上位性构建OA相关基因网络。
目标2:使用死后人脑数据构建多组学网络。
目标3:整合跨物种的网络,以找到具有多个LOE的OA相关基因网络。
分析将在强大的高性能计算架构在橡树岭进行
这将大大提高神经生物学意义的发现的可能性。我们
这项研究将捕捉整个基因组的复杂网络,以发现以前未知的基因,并将有助于
解释了P50和P50之间出现的遗传基因座的神经生物学基础。
更广阔的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Jacobson其他文献
Longitudinal Effects on Plant Species Involved in Agriculture and Pandemic Emergence Undergoing Changes in Abiotic Stress
非生物胁迫变化对农业植物物种的纵向影响和流行病的出现
- DOI:
10.1145/3592979.3593402 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mikaela Cashman;Verónica G. Melesse Vergara;John H. Lagergren;Matthew Lane;Jean Merlet;Mikaela Atkinson;J. Streich;C. Bradburne;R. Plowright;Wayne Joubert;Daniel A Jacobson - 通讯作者:
Daniel A Jacobson
An integrated metagenomic, metabolomic and transcriptomic survey of Populus across genotypes and environments
对跨基因型和环境的杨树进行综合宏基因组学、代谢组学和转录组学调查
- DOI:
10.1038/s41597-024-03069-7 - 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
C. Schadt;Stanton Martin;Alyssa A. Carrell;Allison Fortner;Daniel Hopp;Daniel A Jacobson;D. Klingeman;Brandon Kristy;Jana Phillips;Bryan T. Piatkowski;M. A. Miller;Montana L Smith;S. Patil;Mark Flynn;Shane Canon;Alicia Clum;Christopher J. Mungall;C. Pennacchio;Benjamin Bowen;Katherine Louie;Trent R. Northen;E. Eloe;M. Mayes;W. Muchero;David J Weston;Julie Mitchell;M. Doktycz - 通讯作者:
M. Doktycz
Daniel A Jacobson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Jacobson', 18)}}的其他基金
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10754704 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10410439 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10056018 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10617568 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10224928 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10632010 - 财政年份:2020
- 资助金额:
$ 44.77万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.77万 - 项目类别:
Research Grant














{{item.name}}会员




