Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
基本信息
- 批准号:10056018
- 负责人:
- 金额:$ 63.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsArtificial IntelligenceBig DataBioinformaticsBiologicalBiological ProcessBiologyChromosome MappingChronic DiseaseCocaineCocaine AbuseCocaine UsersComplexComputational BiologyCustomDNA MethylationDataData SetDeveloped CountriesDevelopmentDiseaseDrug abuseDrug userElementsGene Expression RegulationGenesGenetic EpistasisGenetic Predisposition to DiseaseGenomeGenotypeGenotype-Tissue Expression ProjectGoalsHIVHIV InfectionsIllicit DrugsIncidenceIndividualInformation NetworksInternetJointsLaboratoriesMapsMediatingMethodsMolecularMultiomic DataNetwork-basedOrangesOutcomePathogenesisPathway interactionsPharmaceutical PreparationsPopulationPrincipal InvestigatorProductionPublic HealthRegulator GenesResearch DesignResourcesSamplingSignal TransductionSourceSurfaceTechniquesVariantViralViral Load resultViral reservoirVirus LatencyWomanantiretroviral therapycohortgenetic variantgenome wide association studygenome-wideimprovedinnovationinsightmRNA Expressionmethylomemultiple omicsnovelrandom forestresponsesuccesssupercomputersymposiumtranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of the proposed study is to advance our understanding of the complex networks of biology
underlying variation in HIV viral load (VL) and latent reservoir (LR) among HIV+ individuals, and how cocaine
abuse (CA) affects identified biological networks.
With the success of combination antiretroviral therapy (cART) and public health strategies to reduce HIV
incidence, much of the HIV burden in developed countries is now as a chronic disease, including among drug
users. Managing HIV progression (HP) and searching for an HIV cure are of paramount importance. Higher
pretreatment VL is associated with HP and is associated with a larger LR. An HIV cure is dependent on
eliminating the LR. Cocaine is one of the most frequently abused illicit drugs among HIV+ individuals and is
known to increase VL, worsen HP, slow decline of viral production after cART, and, we hypothesize, affect
the quantity of LR. Thus, there is a complex web of relationships among VL, LR, and CA, which are partially
driven by and mediated through genetic susceptibility and gene regulation. As concluded by Le Cleric et al.
(2019) in their recent review: “Only integrative approaches that combine all big data results and consider their
complex interactions will allow us to capture the global picture of HIV molecular pathogenesis. This novel
challenge will require large collaborative efforts and represents a huge open field for innovative
bioinformatics approaches.”
We propose Gene Network Identification and Integration (GNetii) as a multi-method, multi-omic framework
for discovering and understanding the biology underlying HIV outcomes and the effect of CA. We will apply
Explainable Artificial Intelligence, network mapping, and Lines-of-Evidence integration to existing genome-,
methylome-, and transcriptome-wide data across a number of cohorts in the following aims:
Aim 1: Identify gene networks underlying variation in HIV VL and LR applying GNetii.
Aim 2: Identify differences in HIV associated gene networks by CA.
This robustly designed study is significant and innovative: targeting key HIV outcomes affected by CA,
applying big data techniques to identify gene networks across multiple omics (enhancing discovery and
biological interpretation), and leveraging unique LR data. Our multiple Principal Investigator team includes
expertise in HIV, drug abuse, and computational biology. Thus, we are likely to produce important new
insights into key elements of HIV as a chronic disease: providing a basis for targeting unique features of CA
that impact VL and LR, which make HIV management and a cure more challenging in this population.
项目概要/摘要
拟议研究的目标是增进我们对复杂生物学网络的理解
HIV+ 个体中 HIV 病毒载量 (VL) 和潜伏病毒库 (LR) 的潜在差异,以及可卡因如何影响
滥用(CA)影响已识别的生物网络。
随着联合抗逆转录病毒疗法 (cART) 和减少艾滋病毒的公共卫生策略的成功
发,发达国家的艾滋病毒负担大部分已成为一种慢性疾病,其中包括药物
用户。管理 HIV 进展 (HP) 和寻找 HIV 治疗方法至关重要。更高
预处理 VL 与 HP 相关,并且与较大的 LR 相关。 HIV 治愈取决于
消除LR。可卡因是艾滋病病毒感染者中最常滥用的非法药物之一,
已知会增加 VL、恶化 HP、减缓 cART 后病毒产量的下降,并且我们假设会影响
LR的数量。因此,VL、LR 和 CA 之间存在一个复杂的关系网,它们部分地
由遗传易感性和基因调控驱动并介导。正如 Le Cleric 等人的结论。
(2019)在他们最近的评论中:“只有结合所有大数据结果并考虑其
复杂的相互作用将使我们能够全面了解艾滋病毒分子发病机制。这部小说
挑战需要大量的协作努力,并且代表着一个巨大的创新领域
生物信息学方法。”
我们提出基因网络识别和整合(GNetii)作为多方法、多组学框架
发现和理解 HIV 结果的生物学原理以及 CA 的影响。我们将申请
可解释的人工智能、网络映射和证据线与现有基因组的集成,
多个队列的甲基化组和转录组范围的数据,目标如下:
目标 1:应用 GNetii 识别 HIV VL 和 LR 变异背后的基因网络。
目标 2:通过 CA 识别 HIV 相关基因网络的差异。
这项设计严谨的研究具有重要意义和创新性:针对受 CA 影响的关键 HIV 结果,
应用大数据技术来识别跨多个组学的基因网络(增强发现和
生物学解释),并利用独特的 LR 数据。我们的多名首席研究员团队包括
艾滋病毒、药物滥用和计算生物学方面的专业知识。因此,我们可能会产生重要的新产品
深入了解艾滋病毒作为一种慢性疾病的关键要素:为针对 CA 的独特特征提供基础
影响 VL 和 LR,这使得该人群的艾滋病毒管理和治疗更具挑战性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Jacobson其他文献
Longitudinal Effects on Plant Species Involved in Agriculture and Pandemic Emergence Undergoing Changes in Abiotic Stress
非生物胁迫变化对农业植物物种的纵向影响和流行病的出现
- DOI:
10.1145/3592979.3593402 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mikaela Cashman;Verónica G. Melesse Vergara;John H. Lagergren;Matthew Lane;Jean Merlet;Mikaela Atkinson;J. Streich;C. Bradburne;R. Plowright;Wayne Joubert;Daniel A Jacobson - 通讯作者:
Daniel A Jacobson
An integrated metagenomic, metabolomic and transcriptomic survey of Populus across genotypes and environments
对跨基因型和环境的杨树进行综合宏基因组学、代谢组学和转录组学调查
- DOI:
10.1038/s41597-024-03069-7 - 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
C. Schadt;Stanton Martin;Alyssa A. Carrell;Allison Fortner;Daniel Hopp;Daniel A Jacobson;D. Klingeman;Brandon Kristy;Jana Phillips;Bryan T. Piatkowski;M. A. Miller;Montana L Smith;S. Patil;Mark Flynn;Shane Canon;Alicia Clum;Christopher J. Mungall;C. Pennacchio;Benjamin Bowen;Katherine Louie;Trent R. Northen;E. Eloe;M. Mayes;W. Muchero;David J Weston;Julie Mitchell;M. Doktycz - 通讯作者:
M. Doktycz
Daniel A Jacobson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Jacobson', 18)}}的其他基金
Multi-omics Gene Network Identification (Project 4)
多组学基因网络识别(项目4)
- 批准号:
10493708 - 财政年份:2022
- 资助金额:
$ 63.15万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10754704 - 财政年份:2020
- 资助金额:
$ 63.15万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10410439 - 财政年份:2020
- 资助金额:
$ 63.15万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10617568 - 财政年份:2020
- 资助金额:
$ 63.15万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10224928 - 财政年份:2020
- 资助金额:
$ 63.15万 - 项目类别:
Gene Network Identification and Integration (GNetii) Approach to Understanding the Biology Underlying HIV and Drug Abuse.
基因网络识别和整合 (GNetii) 方法用于了解艾滋病毒和药物滥用背后的生物学。
- 批准号:
10632010 - 财政年份:2020
- 资助金额:
$ 63.15万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 63.15万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 63.15万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 63.15万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 63.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




