TOPIC 417: GPU-ACCELERATED 3D MONTE CARLO SPECT RECONSTRUCTION ALGORITHM FOR PERSONALIZED RADIOPHARMACEUTICAL THERAPY

主题 417:用于个性化放射药物治疗的 GPU 加速 3D MONTE CARLO SPECT 重建算法

基本信息

  • 批准号:
    10496814
  • 负责人:
  • 金额:
    $ 39.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2022-06-14
  • 项目状态:
    已结题

项目摘要

Although radiopharmaceutical therapy (RPT) has worked well in patients with lymphoma, late-stage, metastatic prostate cancer, and neuroendocrine tumors, it is well known that because of variability in patient pharmacokinetics, standard dosing leads to clinical outcomes that are difficult to predict and drastically vary. However, it is possible to make RPT safer and more effective by first measuring the radiation emitted by the RPT agent in vivo using quantitative SPECT imaging and then calculating the radiation energy deposited in tumors and normal tissues using dosimetry software. A personalized RPT prescription can be derived that maximizes effectiveness and minimizes side effects. However, because commercially available SPECT reconstruction algorithms do not accurately correct for scatter, they are insufficient for determining personalized RPT prescriptions. Therefore, there is a clinically unmet need for better reconstruction algorithms which enable true quantitative SPECT imaging. The aim of this contract proposal is to build a graphics processing unit (GPU) software platform that can perform SPECT reconstruction with Monte Carlo (MC)-based scatter correction within 5 minutes, making it clinically viable. Fast and accurate GPU MC-based SPECT reconstruction (Torch Recon) will further improve the accuracy of RPT dosimetry and thereby accelerate the clinical adoption of our current SBIR-funded MC dose engine (Torch).
尽管放射性药物治疗(RPT)在淋巴瘤、晚期、转移性前列腺癌和神经内分泌肿瘤患者中效果良好,但众所周知,由于患者药代动力学的差异,标准剂量会导致难以预测的临床结果,而且差异很大。然而,通过首先使用定量SPECT成像测量RPT试剂在体内发射的辐射,然后使用剂量测量软件计算沉积在肿瘤和正常组织中的辐射能量,可以使RPT更安全和更有效。可以得出个性化的RPT处方,使疗效最大化,副作用最小化。然而,由于商业上可用的SPECT重建算法不能准确地校正散射,它们不足以确定个性化的RPT处方。因此,临床上对能够实现真正的定量SPECT成像的更好的重建算法的需求还没有得到满足。这份合同提案的目的是构建一个图形处理单元(GPU)软件平台,该平台可以在5分钟内使用基于蒙特卡罗(MC)的散射校正进行SPECT重建,使其在临床上可行。快速准确的基于GPU MC的SPECT重建(Torch Recon)将进一步提高RPT剂量测量的准确性,从而加快我们目前由SBIR资助的MC剂量引擎(Torch)的临床应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL WICKRE其他文献

PAUL WICKRE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 39.74万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了