Project 2: Identify and enhance LOAD-related signatures in outbred and genetically-engineered marmosets
项目 2:识别并增强近交系和基因工程狨猴中与 LOAD 相关的特征
基本信息
- 批准号:10494776
- 负责人:
- 金额:$ 39.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease riskAnimal ModelAutopsyBehavioralBioinformaticsBiologicalBiological MarkersBiological ModelsCallithrixCell modelClinicalClinical ResearchCognitiveCohort StudiesCommunitiesComplementDataData AggregationDementiaDimensionsDiseaseDisease OutcomeDisease ProgressionDisease modelDrug TargetingEngineeringEvaluationEventFoundationsFutureGenerationsGeneticGenetic EngineeringGenetic VariationGenomeGenomicsGenotypeGoalsHumanHuman GeneticsImageImpaired cognitionKnowledge PortalLaboratoriesLate Onset Alzheimer DiseaseLinkLongevityMethodsModelingMolecularOutcomeOutcome StudyPathologyPathway interactionsPhenotypePopulationPrimatesProcessProteinsResearchRodent ModelSerumStatistical ModelsStructureStudy modelsTestingTissuesValidationVariantWorkanalytical methodclinically relevantdata integrationdata modelingdata-driven modelefficacy testingfunctional genomicsgenetic analysisgenetic associationgenetic variantgenome-widegenomic datahuman datahuman studyin vivo imagingmolecular markermolecular scalemouse modelmulti-scale modelingmultimodalitymultiple data typesmultiple omicsneuropathologynonhuman primatephenotypic datapre-clinical researchpreclinical efficacypreclinical studypresenilin-1risk varianttargeted treatmentwhole genome
项目摘要
PROJECT SUMMARY PROJECT 2
Determining the early molecular and cellular events in the origins and progression of late-onset Alzheimer’s
disease (LOAD) will require an analytical approach that integrates genetic, molecular, in vivo imaging, and
behavioral data. Many clinical studies with this goal are currently underway, which increasingly complement
genetic data with genome-scale molecular data from biofluids and post-mortem tissues, in vivo imaging data of
structure and neuropathology, and detailed cognitive data collected over disease progression. Transforming the
outcomes of these studies into targeted therapeutic strategies requires translatable animal model systems, both
for understanding the biological underpinnings of disease outcomes and preclinical efficacy testing of candidate
treatments.
The marmoset is potentially the most promising non-human primate model of LOAD, providing an analytical
bridge between human studies and high-capacity cell and rodent model systems. Laboratory marmosets with
outbred genetics can potentially provide a range of genotypic and phenotypic variation in relevant clinical
outcomes. This standing variation can be augmented by genetically engineering variants at specific risk loci, as
we have demonstrated with PSEN1. Phenotypic changes in multi-omic, imaging, cognitive, and cellular
outcomes can be rigorously studied in an aging primate with an intermediate lifespan. However, to date there
have not been systematic studies of aging marmosets at scale.
In this project, we will initiate these systematic studies through integrated analyses of genetics and LOAD-related
phenotypes in aging marmosets. We will then rigorously test correspondences between human and marmosets
at all biological levels, from genetic to multi-scale models. Our goal is to develop the marmoset into a mature
platform for preclinical research, which we will pursue with the following three aims: (1) assess natural genetic
variation in outbred marmosets as a model Alzheimer’s disease risk in humans; (2) integrate genetic, genomic,
and phenotype data to establish robust statistical models of disease in marmosets; and (3) evaluate disease
relevance of models by aligning molecular markers of Alzheimer’s disease in marmosets with human study
cohorts. Through this work, we expect to lay the foundations for LOAD-related functional genomics in
marmosets, provide an expanded view of the impact of natural genetic variation in laboratory marmosets,
prioritize genetic variants to engineer in marmosets, and create the first models of LOAD-related marmoset
pathology at multiple scales.
项目摘要项目2
确定晚期阿尔茨海默氏症的起源和进展中的早期分子和细胞事件
疾病(负载)将需要一种分析方法,以整合遗传,分子,体内成像和
行为数据。目前正在进行许多有关此目标的临床研究,这越来越完整
带有基因组规模的分子数据的遗传数据,来自生物流体和验尸组织,体内成像数据
结构和神经病理学,以及有关疾病进展的详细认知数据。改变
这些研究对有针对性的治疗策略的结果需要可翻译的动物模型系统,这既需要
了解疾病结局的生物基础和候选者的临床前效率测试
治疗。
摩尔摩斯奶酪可能是最有前途的非人类私人负载模型,提供了分析
人类研究与高容量细胞和啮齿动物模型系统之间的桥梁。实验室摩托车
概念遗传学可以潜在地提供相关临床的一系列基因型和表型变异
结果。在特定风险基因座的基因工程变体中,可以增强这种常规变异,因为
我们已经证明了PSEN1。多运动,成像,认知和细胞的表型变化
结局可以在具有中间寿命的衰老灵长类动物中进行严格研究。但是,到目前为止
尚未对衰老的摩尔果会进行系统的研究。
在这个项目中,我们将通过遗传学和与负载相关的综合分析来启动这些系统研究
衰老果mos虫的表型。然后,我们将严格测试人和果酱之间的对应关系
从遗传到多尺度模型,在所有生物学水平上。我们的目标是将果酱发展成成熟
临床前研究平台,我们将以以下三个目的进行追求:(1)评估自然遗传
作为人类的阿尔茨海默氏病风险,杂种果mos虫的变化; (2)综合遗传,基因组,
和表型数据,以建立马尔莫斯特疾病的强大统计模型; (3)评估疾病
通过对人类研究中阿尔茨海默氏病的分子标记对齐模型的相关性
同伙。通过这项工作,我们期望在与负载相关的功能基因组中奠定基础
摩尔果会扩大对实验室摩尔群岛自然遗传变异的影响的扩展,,
将遗传变体优先为Marmoset的工程师,并创建与负载相关的Marmoset的第一个模型
多个尺度的病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory W Carter其他文献
Gregory W Carter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory W Carter', 18)}}的其他基金
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
$ 39.66万 - 项目类别:
Generation, Characterization, and Validation of Marmoset Models of Alzheimer's Disease
阿尔茨海默病狨猴模型的生成、表征和验证
- 批准号:
10494769 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
Modeling the Genetic Interaction Between Klotho and APOE Alleles in Alzheimer's Disease
模拟阿尔茨海默病中 Klotho 和 APOE 等位基因之间的遗传相互作用
- 批准号:
10524407 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
Generation, Characterization, and Validation of Marmoset Models of Alzheimer's Disease
阿尔茨海默病狨猴模型的生成、表征和验证
- 批准号:
10819807 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
Open Drug Discovery Center for Alzheimer's Disease
阿尔茨海默病开放药物发现中心
- 批准号:
10250427 - 财政年份:2019
- 资助金额:
$ 39.66万 - 项目类别:
Open Drug Discovery Center for Alzheimer's Disease
阿尔茨海默病开放药物发现中心
- 批准号:
10017132 - 财政年份:2019
- 资助金额:
$ 39.66万 - 项目类别:
IU/JAX/Pitt MODEL-AD: Deep Phenotyping Proteomics Year 1
IU/JAX/Pitt MODEL-AD:深度表型蛋白质组学第 1 年
- 批准号:
10092243 - 财政年份:2016
- 资助金额:
$ 39.66万 - 项目类别:
The IU/JAX Alzheimer's Disease Precision Models Center: Metabolomics
IU/JAX 阿尔茨海默病精密模型中心:代谢组学
- 批准号:
9537115 - 财政年份:2016
- 资助金额:
$ 39.66万 - 项目类别:
The IU/JAX Alzheimer's Disease Precision Models Center: Aging
IU/JAX 阿尔茨海默病精密模型中心:衰老
- 批准号:
9930786 - 财政年份:2016
- 资助金额:
$ 39.66万 - 项目类别:
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 39.66万 - 项目类别: