Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
基本信息
- 批准号:10495000
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBypassCell CycleCell NucleusCell divisionCellsChromosomal RearrangementChromosome CondensationChromosome abnormalityChromosomesClustered Regularly Interspaced Short Palindromic RepeatsComplexCytoplasmDNADNA DamageDNA Double Strand BreakDNA Sequence AlterationDNA Sequence RearrangementDiseaseDouble Strand Break RepairEncapsulatedEngineeringEnvironmentEventGenetic DiseasesGenetic MaterialsGenomeGenomic InstabilityHumanHuman GeneticsImmune responseIndividualInterphaseKnowledgeLabelLateralLightMicroscopyMitosisMitoticMolecularMonitorMovementMutagenesisNuclear StructurePathway interactionsPhaseResearchShapesSourcebasecancer genomecancer genomicschromothripsisdaughter cellgenome integritygenome sequencinghuman diseaseinsightinterdisciplinary approachprematureprogramsresponsespatiotemporaltime use
项目摘要
Project Summary/Abstract
Abnormal chromosomes are hallmark features of human diseases and genetic disorders. Cancer genome
sequencing has uncovered a complex class of localized genomic rearrangements, known as chromothripsis,
that arises from the catastrophic fragmentation of individual chromosomes. Chromothripsis is initiated by mitotic
cell division errors resulting in the formation of micronuclei, aberrant nuclear structures that transiently
encapsulate mis-segregated chromosomes outside of the nucleus. Micronuclei serve as hotspots for the
accumulation of extensive DNA double-strand breaks (DSBs) by restricting DNA damage to a confined region of
the genome. A detailed mechanistic understanding of chromothripsis, however, has been limited by inherent
challenges in monitoring micronucleated chromosomes for more than one cell cycle. We recently bypassed this
limitation by developing a platform that enables the controlled induction of chromosome-specific micronuclei in
human cells. By reconstructing the cascade of events resulting in chromothripsis, we found that damaged
micronuclear DNAs are susceptible to fragmentation upon premature chromosome condensation triggered by
mitotic entry. These fragments undergo error-prone DSB repair during the subsequent cell cycle to generate
diverse chromosomal rearrangements that are identical to those found in cancers and genomic disorders.
Moreover, we identified that short DNA fragments entrapped in the cytoplasm can activate a cell-autonomous
immune response. Despite this knowledge, we currently have a limited mechanistic understanding of the
consequences of chromosome fragmentation. For example, it remains unclear how pulverized fragments from
micronuclei re-incorporate into daughter cell genomes during mitosis and become reassembled by one or more
DSB repair mechanisms throughout interphase. Additionally, it is unknown whether chromosome fragmentation
can elicit a non-cell autonomous response. Here we outline our research program over the next five years aimed
at understanding the fate of micronucleated chromosomes across different phases of the cell cycle and its
mutagenic consequences on genome integrity. Using time-lapse light-sheet microscopy, we will interrogate the
spatiotemporal dynamics of chromosome fragmentation, movement, and reassembly during mitosis and
interphase. This will be achieved by engineering a CRISPR-based labeling strategy to visualize micronucleated
chromosomes undergoing chromothripsis in living cells. Next, we will identify how the DNA damage response
and distinct DSB repair pathways orchestrate the reassembly of chromosome fragments to shape the genomic
rearrangement landscape of mitotic errors. Lastly, we will investigate how chromosome fragments residing in
the cytoplasm can elicit inter-cellular consequences with neighboring cells in the environment, including the
lateral exchange of genetic material. Altogether, these studies aim to define fundamental principles governing
the intrinsic and extrinsic fate of micronuclei in initiating catastrophic genomic alterations. The proposed research
will fill a critical gap in our understanding of how cell cycle errors can rapidly drive somatic mutagenesis.
项目总结/摘要
染色体异常是人类疾病和遗传性疾病的标志性特征。癌症基因组
测序已经发现了一类复杂的局部基因组重排,称为chromothripsis,
这是由单个染色体的灾难性碎片引起的。染色体断裂是由有丝分裂引发的
细胞分裂错误导致形成微核,异常的核结构,
将错误分离的染色体包裹在细胞核外。古核是
通过将DNA损伤限制在一个有限的区域,
基因组然而,对chromothripsis的详细机制理解受到固有的限制。
监测一个以上细胞周期的微核染色体的挑战。我们最近绕过了这个
通过开发一个平台,使染色体特异性微核的可控诱导,
人类细胞。通过重建导致染色体断裂的一连串事件,我们发现,
微核DNA在由以下因素引发的过早染色体凝聚时容易断裂:
有丝分裂进入这些片段在随后的细胞周期中经历易错的DSB修复,以产生
与癌症和基因组疾病中发现的那些相同的多种染色体重排。
此外,我们发现,细胞质中捕获的短DNA片段可以激活细胞自主
免疫反应尽管有这样的知识,我们目前对这一过程的机械理解有限。
染色体断裂的后果。例如,目前尚不清楚,
微核在有丝分裂期间重新并入子细胞基因组,并通过一个或多个
整个间期的DSB修复机制。此外,尚不清楚染色体断裂是否
可以引发非细胞自主反应。在这里,我们概述了我们在未来五年的研究计划,旨在
在理解微核染色体在细胞周期不同阶段的命运及其
对基因组完整性的诱变后果。使用延时光片显微镜,我们将询问
有丝分裂过程中染色体断裂、运动和重组的时空动力学,
间期这将通过设计基于CRISPR的标记策略来实现,以可视化微核细胞。
在活细胞中经历染色体断裂的染色体。接下来,我们将确定DNA损伤如何响应
不同的DSB修复途径协调染色体片段的重组,以形成基因组
有丝分裂错误的重排景观。最后,我们将研究染色体片段如何驻留在
细胞质可以引发与环境中相邻细胞的细胞间后果,包括
遗传物质的横向交换。总而言之,这些研究旨在确定管理
微核在引发灾难性基因组改变中的内在和外在命运。拟议研究
将填补我们对细胞周期错误如何快速驱动体细胞突变的理解中的关键空白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ly其他文献
Peter Ly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ly', 18)}}的其他基金
Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
- 批准号:
10796728 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
- 批准号:
10673104 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Cell Division Errors as a Mechanism Driving Massive Genomic Rearrangements
细胞分裂错误作为驱动大规模基因组重排的机制
- 批准号:
9371237 - 财政年份:2017
- 资助金额:
$ 41万 - 项目类别:
相似国自然基金
展向局部自由流湍流下边界层bypass转捩的二次失稳机理的研究
- 批准号:11202147
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
边界层中Bypass转捩机理的研究
- 批准号:11102131
- 批准年份:2011
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the Effect of Changes in Blood Flow to the Brain Before and After Cardiopulmonary Bypass on Postoperative Delirium
体外循环前后脑血流变化对术后谵妄的影响研究
- 批准号:
23K08418 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A novel through-the-scope exchangeable double balloon catheter to guide endoscopic bypass: a practice-changing technology in the management of malignant gastric outlet obstruction
一种新型的通过镜可交换双球囊导管来引导内窥镜旁路:治疗恶性胃出口梗阻的一种改变实践的技术
- 批准号:
498860 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Operating Grants
Research and development of a virtual cardiopulmonary bypass/ECMO simulator using MR (Mixed Reality)
利用MR(混合现实)研发虚拟体外循环/ECMO模拟器
- 批准号:
23K15535 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated bypass of mitochondrial electron transport chain with artificial and endogenous substrates
NAD(P)H 醌氧化还原酶 1 (NQO1) 介导的人工和内源底物线粒体电子传递链旁路
- 批准号:
10789749 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Sediment transport mechanism on self-lining channel and application to abrasion countermeasures for sediment bypass tunnels
自衬通道输沙机理及在泥沙绕行隧道磨损对策中的应用
- 批准号:
23H01511 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Significance of the alteration of enterohepatic circulation in the mechanism of improvement of glucose metabolism after duodenal jejunal bypass
肠肝循环的改变在十二指肠空肠绕道术后糖代谢改善机制中的意义
- 批准号:
23K08146 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sex-differences in 5 year survival with percutaneous coronary intervention compared to coronary artery bypass graft surgery in patients with diabetes and multivessel disease
糖尿病和多支血管疾病患者经皮冠状动脉介入治疗与冠状动脉搭桥手术的 5 年生存率存在性别差异
- 批准号:
495441 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
The Role of Intraoperative Transesophageal Echocardiography During Isolated Coronary Artery Bypass Graft Surgery
术中经食管超声心动图在离体冠状动脉搭桥手术中的作用
- 批准号:
10738059 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Racial Disparities in Sleep, Circadian Rhythm, and Glucoregulation Among Individuals Post-Coronary Artery Bypass Surgery
冠状动脉搭桥手术后个体在睡眠、昼夜节律和血糖调节方面的种族差异
- 批准号:
10750187 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:














{{item.name}}会员




