Cell Division Errors as a Mechanism Driving Massive Genomic Rearrangements
细胞分裂错误作为驱动大规模基因组重排的机制
基本信息
- 批准号:9371237
- 负责人:
- 金额:$ 11.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellAddressAneuploidyAutomobile DrivingAwardBiogenesisBiologicalCRISPR/Cas technologyCaliforniaCancer BiologyCategoriesCell CycleCell Cycle StageCell Division ProcessCell divisionCellsCellular biologyCentromereCharacteristicsChromosomal InstabilityChromosomal RearrangementChromosome SegregationChromosome abnormalityChromosomesCoinCommunitiesComplexCoupledDNADNA DamageDNA Sequence RearrangementDNA sequencingDerivative ChromosomeDevelopmentDiseaseEncapsulatedEngineeringEpigenetic ProcessEventEvolutionFacultyFoundationsGenerationsGenesGenetic TranscriptionGenome StabilityGenomic InstabilityGenomicsGoalsHealthHematologic NeoplasmsHeritabilityHumanHuman Cell LineInheritedInstitutesInterphaseMaintenanceMalignant NeoplasmsMediatingMembraneMentorsMethodologyMitosisMitoticModelingMolecularNuclear EnvelopePathway interactionsPatientsPharmaceutical PreparationsPhasePositioning AttributeProcessRecruitment ActivityResearchResearch TrainingResolutionScienceSeriesShapesSiteSolid NeoplasmSpecific qualifier valueStructureSystemTechnologyTrainingUnited States National Institutes of HealthUniversitiesanticancer researchbasecancer cellcancer geneticscancer genomecareercareer developmentchromothripsisdeep sequencinggenome-widegenomic signaturehuman tissueinnovationinsightinterdisciplinary approachlive cell imagingmultidisciplinarynext generationnucleasepressurepreventprogramspublic health relevancerepairedscientific atmospherespatiotemporaltelomeretenure tracktissue culturetissue/cell culturetumortumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT (DESCRIPTION)
Advances in DNA sequencing technologies have uncovered remarkable structural complexities within the
human cancer genome, including a new category of massive and localized intra-chromosomal rearrangements
coined chromothripsis. Since its discovery in 2011, the signatures of chromothripsis have now been detected in
a broad spectrum of solid and hematological tumors. These alterations are thought to occur during a single
catastrophic event; however, their underlying mechanistic origins are not well understood. Errors in mitotic cell
division can provoke chromothripsis through entrapment of missegregated chromosomes into aberrant
structures called micronuclei. Dr. Ly previously identified that chromosomes in micronuclei are subjected to
extensive shattering in mitosis, and the resulting DNA fragments are reassembled by canonical end-joining
repair in the subsequent interphase. This proposal for an NIH Pathway to Independence Award seeks to
understand how chromosome segregation errors during mitosis initiate a cascade of downstream genomic
instability events to directly shape or contribute to the cancer genome. In the first aim, examples of fully
functional chromosomes with de novo chromothripsis will be generated through development of a powerful and
reversible centromere-specific inactivation approach coupled to a chromosome-specific selection strategy in
human tissue culture cells. Genome-wide sequencing will be used to identify the hallmark features of
chromothripsis from unique clonal derivatives following chromosome missegregation into micronuclei. In the
second aim, the precise mechanisms and spatiotemporal dynamics of chromosome shattering and reassembly
events will be explored through multidisciplinary cell biological approaches, including gene disruption and live-
cell imaging. The third aim will focus on how chromosomes with gross rearrangements that lack a functional
alphoid centromere are able to propagate indefinitely through the epigenetic formation of a stable, new
centromere at non-alphoid loci. By leveraging his expertise in engineering sophisticated tissue culture models
combined with his background in cancer biology, these collective efforts by Dr. Ly will establish the
mechanisms and consequences of mitotic errors in triggering genomic instability – insights that are critical for
understanding the biogenesis of complex genomic features commonly manifested in patient tumors. During the
mentored K99 phase of the Award, Dr. Ly will receive additional and needed training at the Ludwig Institute for
Cancer Research under the guidance of Dr. Don Cleveland – a widely recognized and established leader in
the fields of cell division and aneuploidy. The Ludwig Institute for Cancer Research, the University of California
at San Diego, and the surrounding La Jolla scientific community serves as an exceptional atmosphere for
research training, collaborative science, and career development. An excellent team of collaborators (Drs.
David Page and Andrew Shiau) and consultants (Drs. Richard Kolodner, Paul Mischel, and Karen Oegema)
has been assembled to provide Dr. Ly with additional scientific training and career support before, during, and
after transitioning toward an independent tenure-track faculty position. The R00 Award phase will set the
foundation for Dr. Ly's long-term career goals of establishing a rigorous research program that seeks to
address exciting, unanswered questions in the fields of cell biology, cancer genetics, and genome stability
through use of cutting-edge, interdisciplinary methodologies.
项目总结/摘要(描述)
DNA测序技术的进步已经揭示了DNA序列中显著的结构复杂性。
人类癌症基因组,包括一类新的大规模和局部染色体内重排
创造的chromothripsis。自2011年发现以来,现在已经发现了chromothripsis的特征,
广泛的实体瘤和血液肿瘤这些变化被认为发生在一个单一的
灾难性事件;然而,其潜在的机械起源还没有得到很好的理解。有丝分裂细胞错误
分裂可以通过将错误分离的染色体捕获到异常的染色体中而引起染色体断裂。
称为微核。Ly博士先前发现,微核中的染色体受到
在有丝分裂中大量碎裂,产生的DNA片段通过典型的末端连接重新组装
在随后的间期修复。这项关于NIH独立之路奖的提案旨在
了解有丝分裂过程中染色体分离错误如何启动下游基因组级联反应,
不稳定性事件直接塑造或促成癌症基因组。在第一个目标中,
具有从头染色体断裂的功能性染色体将通过发育一个强大的
可逆的着丝粒特异性失活方法结合染色体特异性选择策略,
人类组织培养细胞。全基因组测序将用于识别
染色体误分离成微核后,从独特的克隆衍生物中分离出的染色体碎裂。在
第二个目标,染色体破碎和重组的精确机制和时空动力学
将通过多学科细胞生物学方法,包括基因破坏和活细胞,
细胞成像第三个目标将集中在如何染色体与粗重排,缺乏功能性的,
α着丝粒能够通过表观遗传形成一个稳定的,新的
着丝粒位于非α型位点。通过利用他在工程复杂组织培养模型方面的专业知识
结合他在癌症生物学方面的背景,Ly博士的这些集体努力将建立
触发基因组不稳定性的有丝分裂错误的机制和后果-对
了解患者肿瘤中常见的复杂基因组特征的生物起源。期间
在K99阶段的指导下,Ly博士将在路德维希研究所接受额外的必要培训,
癌症研究在唐·克利夫兰博士的指导下-一个广泛认可的和既定的领导者,
细胞分裂和非整倍体领域。加州大学路德维希癌症研究所
在圣地亚哥,和周围的拉霍亚科学界作为一个特殊的气氛,
研究培训、协作科学和职业发展。一个优秀的团队合作者(博士。
大卫页和安德鲁萧)和顾问(博士理查德Kolodner,保罗Mischel,和卡伦Oegema)
已经组装,以提供额外的科学培训和职业生涯的支持博士Ly之前,期间,
在向独立的终身教职转变之后。R 00奖励阶段将设置
Ly博士长期职业目标的基础是建立一个严格的研究计划,
解决细胞生物学、癌症遗传学和基因组稳定性领域令人兴奋的未解问题
通过使用尖端的跨学科方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ly其他文献
Peter Ly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ly', 18)}}的其他基金
Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
- 批准号:
10495000 - 财政年份:2022
- 资助金额:
$ 11.81万 - 项目类别:
Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
- 批准号:
10796728 - 财政年份:2022
- 资助金额:
$ 11.81万 - 项目类别:
Genomic Instability from Fragmented Chromosomes in Micronuclei
微核中染色体碎片导致的基因组不稳定性
- 批准号:
10673104 - 财政年份:2022
- 资助金额:
$ 11.81万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant














{{item.name}}会员




