Project 2: Predicting Treatment Responses Using Single Cell RNA Sequencing and Bioengineered Patient-derived Organotypic Models of HNC
项目 2:利用单细胞 RNA 测序和生物工程患者衍生的 HNC 器官模型预测治疗反应
基本信息
- 批准号:10495294
- 负责人:
- 金额:$ 37.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-02 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureBiological MarkersBiomedical EngineeringBloodCancer ModelCarcinomaCellsCellular Indexing of Transcriptomes and Epitopes by SequencingCetuximabClinicalClinical ResearchComplexDataData SetDetectionDiseaseDoseEastern Cooperative Oncology GroupEnvironmentEpidermal Growth Factor ReceptorFibroblastsFutureGene ExpressionGene Expression ProfileGenomicsGoalsHPV oropharyngeal cancerHead and Neck CancerHuman PapillomavirusImmuneIndividualInfrastructureLarynxLymphaticMeasuresMicroarray AnalysisModelingMolecularNeoplasm Circulating CellsNivolumabOperative Surgical ProceduresOral cavityOrganoidsPatient CarePatient-Focused OutcomesPatientsPhenotypePilot ProjectsPopulationPostoperative PeriodPrediction of Response to TherapyPrimary NeoplasmProgression-Free SurvivalsProteinsProteomicsQuality of lifeRadiationRadiation ToleranceRadiation therapyRegimenReportingResearchRiskSamplingSelection for TreatmentsStainsStratificationStromal CellsSurvival RateT-cell inflamedTestingTherapeuticTimeTimeLineTissue MicroarrayTissue SampleTissue-Specific Gene ExpressionTissuesTreatment EfficacyTreatment outcomeTumor TissueUniversitiesWisconsinWorkadvanced diseaseangiogenesisanti-PD-1cancer biomarkerschemoradiationclinical decision-makingcohortdata modelingeffective therapyefficacy testingexperienceexperimental studyfeasibility testinghead and neck cancer patientimprovedin vivoindividual patientmolecular markermultiple omicsnovelnovel markeroral HPV-positive head and neck cancerspatient stratificationphase 2 studypredictive markerpredictive modelingpredictive toolsprimary endpointprotein expressionreconstitutionresponseresponse biomarkersecondary endpointsingle-cell RNA sequencingstandard of caresuccesssystemic toxicitytargeted treatmenttooltranscriptomicstreatment grouptreatment responsetreatment strategytumortumor growthtumor microenvironment
项目摘要
PROJECT SUMMARY - PROJECT 2
Our current inability to accurately predict treatment outcomes for head and neck cancer (HNC) patients
represents a major challenge for clinicians and undoubtedly contributes to both the poor overall and progression
free survival rates in advanced disease. Currently no predictive biomarkers are used clinically for definitive
therapies, thus, there is a compelling need to develop new biomarkers and tools to improve clinical decision
making. Functional biomarkers that can provide multiple orthogonal endpoints are well suited to reporting on a
complex and dynamic environment such as the tumor microenvironment (TME). For this reason, we intend to
investigate HNC biomarkers both directly in tumor samples and in a bioengineered patient-specific model to
create a novel suite of endpoints. We will use state of the art single cell RNA sequencing (scCITE-seq), protein
expression signatures from tumor tissue microarrays (TMA’s) and analysis of circulating tumor cells (CTC’s). We
will utilize this multi-omic, patient-specific data set to identify and validate signatures of treatment efficacy and
stratify patient outcomes. We will then test the feasibility of using patient specific bioengineered models to inform
patient care in a clinical pilot study. The bioengineered model of the HNC TME is made entirely of cells derived
from the same patient tumor sample, from the same patient cohort used for CITEseq, TMA and CTC analysis.
These microscale patient-specific (built from the individual patients own cells) bioengineered models recapitulate
the TME architecture, containing a HNC epithelial spheroid surrounded by a matrix containing fibroblasts and
immune cells and flanked by blood and lymphatic microvessels. Our specific aims are: 1) Evaluate the ability of
HNC patient-specific bioengineered models to predict treatment efficacy, where we will build patient-specific
bioengineered models for 22 HNC patients (representing HPV-positive and HPV-negative disease and patients
treated with primary surgery with (chemo)radiation or primary chemoradiation) and treat them with the same
treatment the patient receives. Metrics of treatment success in the models will be correlated with actual patient
outcomes including progression free survival. 2) Identify HNC biomarkers using scCITE-seq and TMA, where
we will perform scCITE-seq and will correlate gene expression and cell populations with patient outcomes to
investigate existing putative biomarkers and identify additional novel biomarkers. Biomarkers will be further
investigated in a TMA and in CTC’s. 3) Use of bioengineered models to inform dose de-escalation in a clinical
pilot study, where tissue will be acquired from surgery from 24 HPV+ HNC patients and used for patient-specific
bioengineered model creation. Models will be treated to determine the radiosensitivity of a patient’s tumor and
to stratify intermediate risk patients between 50 or 60 Gy treatment groups. Primary endpoints will focus on
feasibility of model integration with secondary endpoints including local control. The successful completion of
these aims will provide powerful new tools for the stratification of HNC patients and improved clinical decision
making to help inform the most effective treatment selections for individual HNC patients in the future.
项目概要-项目2
我们目前无法准确预测头颈癌(HNC)患者的治疗结果
这对临床医生来说是一个重大挑战,毫无疑问,
晚期疾病的自由生存率。目前,临床上没有使用预测性生物标志物来确定
因此,迫切需要开发新的生物标志物和工具来改善临床决策
制作。可以提供多个正交终点的功能性生物标志物非常适合于报告一个或多个生物标志物。
复杂和动态的环境,如肿瘤微环境(TME)。因此,我们打算
直接在肿瘤样品和生物工程患者特异性模型中研究HNC生物标志物,
创建一套新颖的端点。我们将使用最先进的单细胞RNA测序(scCITE-seq)、蛋白质测序和DNA测序。
来自肿瘤组织微阵列(TMA)的表达特征和循环肿瘤细胞(CTC)的分析。我们
将利用这一多组学、患者特异性数据集来识别和验证治疗疗效的特征,
对患者结局进行分层。然后,我们将测试使用患者特异性生物工程模型的可行性,
临床试验研究中的患者护理。HNC TME的生物工程模型完全由细胞衍生的
来自相同患者肿瘤样品,来自用于CITEseq、TMA和CTC分析的相同患者群组。
这些微型患者特异性(由个体患者自身细胞构建)生物工程模型概括了
TME结构,包含被含有成纤维细胞的基质包围的HNC上皮球状体,
免疫细胞和两侧的血液和淋巴微血管。我们的具体目标是:1)评估能力
HNC患者特异性生物工程模型,以预测治疗效果,在那里我们将建立患者特异性
用于22名HNC患者的生物工程模型(代表HPV阳性和HPV阴性疾病和患者
用(化疗)放疗或原发性放化疗的原发性手术治疗),并用同样的方法治疗
患者接受的治疗。模型中的治疗成功率将与实际患者相关
结果包括无进展生存期。2)使用scCITE-seq和TMA鉴定HNC生物标志物,其中
我们将进行scCITE-seq,并将基因表达和细胞群与患者结果相关联,
研究现有的推定生物标志物并鉴定额外的新生物标志物。生物标志物将进一步
在TMA和CTC中进行了调查。3)使用生物工程模型告知临床中的剂量递减
初步研究,其中组织将从24名HPV+ HNC患者的手术中获得,并用于患者特异性
生物工程模型的建立将处理模型以确定患者肿瘤的放射敏感性,
对50或60戈伊治疗组之间的中等风险患者进行分层。主要终点将侧重于
模型与次要终点(包括局部控制)整合的可行性。圆满完成
这些目标将为HNC患者的分层和改善临床决策提供强有力的新工具
这有助于为未来的HNC患者提供最有效的治疗选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J Beebe其他文献
Molecular analysis of antigen presentation machinery in circulating tumor cells from renal cell carcinoma and prostate cancer
- DOI:
10.1186/2051-1426-1-s1-p57 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:10.600
- 作者:
Joshua M Lang;Jacob T Tokar;Jamie Sperger;Benjamin P Casavant;Scott M Berry;Lindsay N Strotman;David J Beebe - 通讯作者:
David J Beebe
David J Beebe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J Beebe', 18)}}的其他基金
Development of a human intestinal microphysiological system for the study of immune responses to protozoan parasites
开发人体肠道微生理系统用于研究原生动物寄生虫的免疫反应
- 批准号:
10733303 - 财政年份:2023
- 资助金额:
$ 37.09万 - 项目类别:
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10333399 - 财政年份:2021
- 资助金额:
$ 37.09万 - 项目类别:
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10552700 - 财政年份:2021
- 资助金额:
$ 37.09万 - 项目类别:
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10209529 - 财政年份:2021
- 资助金额:
$ 37.09万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
9916997 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10331769 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
Mechanisms of microenvironment mediated resistance to cancer cell surface targeted therapeutics
微环境介导的癌细胞表面靶向治疗耐药机制
- 批准号:
10686449 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
Mechanisms of microenvironment mediated resistance to cancer cell surface targeted therapeutics
微环境介导的癌细胞表面靶向治疗耐药机制
- 批准号:
10263962 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10094211 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
A multiplexed micro scale assay for real time analysis of pediatric immune cell function
用于实时分析儿科免疫细胞功能的多重微量测定
- 批准号:
10380807 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Fellowship














{{item.name}}会员




