Development of a human intestinal microphysiological system for the study of immune responses to protozoan parasites
开发人体肠道微生理系统用于研究原生动物寄生虫的免疫反应
基本信息
- 批准号:10733303
- 负责人:
- 金额:$ 76.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-05 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressApicalArchitectureBindingBiological ModelsBiomimeticsBloodBlood VesselsCell CommunicationCell Culture TechniquesCellsCessation of lifeClostridium difficileCoculture TechniquesCongenital AbnormalityCystDataDevelopmentDevicesDiseaseDisease ProgressionEndotheliumEntamoeba histolyticaEnteralEnvironmentEpithelial CellsEpitheliumFoodFood ContaminationGene ExpressionGoalsGrowthHelper-Inducer T-LymphocyteHumanHypoxiaImmuneImmune responseImmunityImmunocompromised HostImmunologic MonitoringImmunologyIndividualInfantInfectionInfection ControlInflammationInnate Immune ResponseIntestinal parasiteIntestinesInvestigationKnowledgeLymphaticLymphatic Endothelial CellsMalignant NeoplasmsMeasuresMediatingMicrobiologyMicrofluidic MicrochipsMicrofluidicsModelingMonitorMorbidity - disease rateMucous body substanceMusNutrientOocystsOralOrganoidsParasite ControlParasitesParasitic DiseasesParasitic infectionPathway interactionsPersonsPhagocytosisPhysiologicalPopulationPregnant WomenProductionResearchRoleRouteS100 ProteinsS100A11 geneSideSmall IntestinesSystemTissuesToll-like receptor 11Toxoplasma gondiiToxoplasmosisTreesVaccinesVascular Endothelial CellWaterWorkcytokineenteric infectionexperimental studyhuman diseasehuman migrationhuman modelhuman pathogenimprovedin vitro Modelintestinal epitheliumlymphatic vasculaturemembermicrophysiology systemmigrationmodel developmentmonocytemortalitymouse modelneutrophiloral infectionpathogenpathogenic bacteriarecruitresponsetransmission processvaccine accessvaccine developmentwaterborne
项目摘要
PROJECT SUMMARY
Microphysiological systems have great potential for modeling human disease but advanced in vitro models of
parasitic infection and immunity are severely underrepresented. Parasites are major causes of morbidity and
mortality globally, infecting millions of people every year, yet, there are no effective vaccines available for any
enteric parasitic infection. Oral transmission via contaminated food or water is the most common route of
parasitic infection for humans, but our knowledge of parasite/host interactions, including how parasites interact
with immune cells to either cause disease or elicit a protective immune response, within the intestinal tract is
very limited. There is a critical need to create improved in vitro models of human immune-parasite interactions
to capture key features present during parasitic infection establishment and disease progression. To address
this need we will develop a microphysiological gut vasculature lumen system based on the LumeNEXT
microfluidic device system. This 3-dimensional cell culture device recapitulates the gut architecture and
includes a human intestinal epithelial lumen flanked by blood and lymphatic vasculature. With these advanced
in vitro models, we will introduce parasites into the intestinal epithelium and human immune cells into the
vasculature to monitor parasitic disease and immune response. Our goal is to create a microphysiological
system that can be used for the study of any protozoan parasite. For this proposal, we will use the protozoan
parasites Toxoplasma gondii (T. gondii) and Entamoeba histolytica (E. histolytica) because 1) they are human
pathogens of global importance, 2) they are on distinct branches of the protist evolutionarily tree, 3) they have
defined lab growth conditions and genetically tagged marker strains, 4) our lab has recently developed the
unique ability to produce large numbers of the highly infectious oocysts and cysts forms of both T. gondii. Our
data shows that T. gondii infection of the intestinal epithelial lumen in our in vitro model system elicits an active
immune response and migration of human immune cells from the vasculature. In this project, we will use these
3D biomimetic gut-vasculature lumen models to address critical knowledge gaps of the human immune
responses to T. gondii and E. histolytica. We will incorporate an anaerobic environment so that the immune
responses can be defined under hypoxic conditions. These experiments will provide the foundational
understanding of the human innate immune responses to intestinal T. gondii infection that are essential for
vaccine development. We will also model E. histolytica invasive disease using nutrient limitation and co-culture
with Clostridiodes difficile. The advances we will achieve in this proposal will allow the microbiology and
immunology fields to determine the immune responses to the biologically relevant stages of intestinal parasites
in human models.
项目摘要
微生理学系统在模拟人类疾病方面具有巨大潜力,但先进的体外微生理学模型
寄生虫感染和免疫力严重不足。寄生虫是发病的主要原因,
死亡率在全球范围内,每年感染数百万人,然而,没有有效的疫苗可用于任何
肠道寄生虫感染通过受污染的食物或水的口服传播是最常见的传播途径。
但是我们对寄生虫/宿主相互作用的知识,包括寄生虫如何相互作用,
与免疫细胞一起引起疾病或引发保护性免疫反应,在肠道内,
非常有限。迫切需要建立改进的人体免疫-寄生虫相互作用的体外模型
以捕获寄生虫感染建立和疾病进展期间存在的关键特征。解决
基于这一需求,我们将开发一种基于LumeNext的微生理肠道脉管系统
微流体装置系统。这种三维细胞培养装置重现了肠道结构,
包括两侧为血液和淋巴管系统的人肠上皮内腔。这些先进的
在体外模型中,我们将寄生虫引入肠上皮,将人类免疫细胞引入肠上皮。
监测寄生虫病和免疫反应。我们的目标是创造一个微生理学的
该系统可用于研究任何原生动物寄生虫。对于这个提议,我们将使用原生动物
寄生虫弓形虫(Toxoplasma gondii(T. gondii)和溶组织内阿米巴(E.因为1)他们是人类
全球重要的病原体,2)它们在原生生物进化树的不同分支上,3)它们有
定义的实验室生长条件和遗传标记菌株,4)我们的实验室最近开发了
独特的能力,产生大量的高度传染性卵囊和囊肿形式的T。刚地。我们
数据显示T.在我们的体外模型系统中,
免疫应答和人免疫细胞从脉管系统的迁移。在这个项目中,我们将使用这些
3D仿生肠道血管管腔模型,以解决人类免疫的关键知识缺口
对T. gondii和E.溶组织剂我们会创造一个无氧环境,
可以在缺氧条件下定义反应。这些实验将提供基础
了解人类对肠道T细胞的先天免疫反应。弓形虫感染是必不可少的
疫苗研发。我们也将模型E。使用营养限制和共培养溶组织侵袭性疾病
艰难梭菌感染我们在这项提案中取得的进展将使微生物学和
免疫学领域,以确定对肠道寄生虫的生物学相关阶段的免疫反应
在人体模型中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J Beebe其他文献
Molecular analysis of antigen presentation machinery in circulating tumor cells from renal cell carcinoma and prostate cancer
- DOI:
10.1186/2051-1426-1-s1-p57 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:10.600
- 作者:
Joshua M Lang;Jacob T Tokar;Jamie Sperger;Benjamin P Casavant;Scott M Berry;Lindsay N Strotman;David J Beebe - 通讯作者:
David J Beebe
David J Beebe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J Beebe', 18)}}的其他基金
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10333399 - 财政年份:2021
- 资助金额:
$ 76.91万 - 项目类别:
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10552700 - 财政年份:2021
- 资助金额:
$ 76.91万 - 项目类别:
Under-oil open microfluidic system (UOMS) for studying systemic fungal infection
用于研究全身真菌感染的油下开放式微流体系统 (UOMS)
- 批准号:
10209529 - 财政年份:2021
- 资助金额:
$ 76.91万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
9916997 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10331769 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
Mechanisms of microenvironment mediated resistance to cancer cell surface targeted therapeutics
微环境介导的癌细胞表面靶向治疗耐药机制
- 批准号:
10686449 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10094211 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
Mechanisms of microenvironment mediated resistance to cancer cell surface targeted therapeutics
微环境介导的癌细胞表面靶向治疗耐药机制
- 批准号:
10263962 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
A multiplexed micro scale assay for real time analysis of pediatric immune cell function
用于实时分析儿科免疫细胞功能的多重微量测定
- 批准号:
10380807 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
A multiplexed micro scale assay for real time analysis of pediatric immune cell function
用于实时分析儿科免疫细胞功能的多重微量测定
- 批准号:
10132990 - 财政年份:2020
- 资助金额:
$ 76.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 76.91万 - 项目类别:
Research Grant