Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
基本信息
- 批准号:10501719
- 负责人:
- 金额:$ 39.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-24 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellAddressAffectBiologicalBiologyBrainCell CommunicationCell physiologyCellsCellular MorphologyChemicalsChemistryClustered Regularly Interspaced Short Palindromic RepeatsDefectDevelopmentDiseaseEnvironmentFunctional disorderGene ExpressionGene Expression ProfileGenesGeneticGenotypeHealthHumanImageImaging DeviceIn SituIn VitroIndividualLinkMolecularMolecular AbnormalityMultimodal ImagingMutationNear-infrared optical imagingNeuronsOrganOrganismPathogenicityPhenotypeProteomicsQuantum DotsRNAResearch PersonnelScienceSeriesShapesSystemTechnologyThickTissue EngineeringTissue imagingTissuesTranslatingautisticbasecell typecomplex biological systemsgenetic manipulationimaging geneticsimaging platformin vivoinnovationintercellular communicationmultiple omicsprotein profilingsingle cell sequencingtooltranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
The biology of multicellular organisms is organized on multiple levels. Molecular abundance and interactions
regulate cell function; Communication of cells with nearby cells and environments further shapes cellular states
and functions; Cells form highly interconnected functional networks organ-wide. Thus, a function or a dysfunction
of an organ is manifested through the orchestrated action of individual cells comprising the organ. To
mechanistically comprehend how a disease develops, we need to understand how the abnormal alteration in a
cell is translated into system-level dysfunctions. With remarkable progress in sequencing, imaging, and genetic
manipulation, researchers are now a step closer to decipher how cellular genotype gives rise to system-level
phenotype in vivo. Single-cell sequencing probes the genetic profile of individual cells comprising a tissue.
Organ-scale phenotyping, such as CLARITY, probes the detailed morphology of cells, cellular wiring, and the
spatial organization of cells throughout an organ. CRISPR-based genetic perturbation establishes causal links
between genes and phenotype in vitro at unprecedented throughput. However, these technologies mostly probe
a single facet of a complex biological system. This limitation makes it challenging to integrate information
obtained from different molecular types and scales, and to extract the mechanistic underpinning of system-level
phenotype, especially in vivo. We aim to address this critical gap by developing a transformational, multiscale,
multimodal imaging platform that screens a large tissue volume to identify cells with abnormal phenotype and
characterize the complete and quantitative molecular contents or the abnormal cells as well as nearby cells. This
platform will identify how the abnormal genetic change in a cell alters its phenotype, affects nearby cells, and
contributes to disease development. Despite its immense potential, streamlining organ-scale proteomic
phenotyping and in situ single cell transcriptomics is impossible due to the incompatibility of chemistry and
imaging requirements. We propose to develop a series of chemical tools to enable multiscale, integrative profiling
of proteins and RNAs: reversible protection of RNAs in an intact tissue; tissue transformation chemistry for multi-
omic profiling; and quantum dot-based NIR imaging platform for thick-tissue imaging. Integrating these tools, we
will develop and implement the multiscale, integrative imaging platform to characterize phenotypic abnormalities
in autistic brains, such as ectopic neuronal connections, and profile cellular transcriptome at the region of
phenotypic defects. Such study will provide a holistic view of diseased tissues to decipher pathogenic
mechanisms behind a phenotypic abnormality at a molecular level, through the identification of altered gene
expression patterns near an abnormal phenotype, intercellular communication network that leads to the system-
level phenotype, and the spatial organization of differential cell types in healthy versus diseased tissues. In
addition to enabling new biological studies, the newly developed chemical tools will drive innovations in a wide
range of biomedical science, including RNA biology, genetics, imaging, and tissue engineering.
项目摘要
多细胞生物的生物学是在多个层次上组织的。分子丰度和相互作用
调节细胞功能;细胞与附近细胞和环境的通信进一步塑造细胞状态
和功能;细胞在器官范围内形成高度互连的功能网络。因此,功能或功能障碍
一个器官的功能是通过组成该器官的单个细胞的协调作用来表现的。到
机械地理解疾病是如何发展的,我们需要了解一个细胞中的异常变化是如何发生的。
细胞会转化为系统级功能障碍。随着测序成像和遗传学的显著进步
操纵,研究人员现在更接近于破译细胞基因型如何引起系统水平
体内表型。单细胞测序探测构成组织的单个细胞的遗传谱。
器官规模的表型分析,如细胞形态学,细胞布线,以及细胞内的蛋白质。
整个器官中细胞的空间组织。基于CRISPR的遗传扰动建立因果联系
基因和表型之间的关系。然而,这些技术大多探测
一个复杂生物系统的单一方面。这种局限性使得整合信息成为一项挑战
从不同的分子类型和规模,并提取系统级的机制基础,
表型,尤其是在体内。我们的目标是通过开发一个转型的,多尺度的,
多模态成像平台,其筛选大的组织体积以识别具有异常表型的细胞,
表征异常细胞及其邻近细胞的完整和定量的分子内容物。这
该平台将识别细胞中的异常遗传变化如何改变其表型,影响附近的细胞,
有助于疾病的发展。尽管其巨大的潜力,精简器官规模的蛋白质组
表型分析和原位单细胞转录组学是不可能的,
成像要求。我们建议开发一系列化学工具,以实现多尺度,综合分析
蛋白质和RNA:在完整组织中RNA的可逆保护;多-
用于厚组织成像的基于量子点的NIR成像平台。整合这些工具,我们
将开发和实施多尺度的综合成像平台,以表征表型异常
在自闭症患者的大脑中,如异位神经元连接,并在自闭症区域的细胞转录组谱
表型缺陷此类研究将提供患病组织的整体视图,以破译病原体
通过鉴定改变的基因,在分子水平上研究表型异常背后的机制。
异常表型附近的表达模式,导致系统-
水平表型,以及健康与患病组织中差异细胞类型的空间组织。在
除了能够进行新的生物学研究外,新开发的化学工具还将在广泛的领域推动创新。
生物医学科学的范围,包括RNA生物学,遗传学,成像和组织工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee-Sun Han其他文献
Hee-Sun Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee-Sun Han', 18)}}的其他基金
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 39.65万 - 项目类别:
Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
- 批准号:
10797662 - 财政年份:2022
- 资助金额:
$ 39.65万 - 项目类别:
Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
- 批准号:
10709587 - 财政年份:2022
- 资助金额:
$ 39.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.65万 - 项目类别:
Research Grant