Building biophysical and biochemical complexity in 3D cell and tissue constructs
在 3D 细胞和组织结构中构建生物物理和生化复杂性
基本信息
- 批准号:10501793
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultApplied ResearchBehaviorBiochemicalBiocompatible MaterialsBiologicalBiologyBiomechanicsBiomimeticsBiophysicsBlood VesselsCell CommunicationCell DensityCell modelCell physiologyCellsClinicalComplexCuesDevelopmentDiseaseDisease ProgressionEngineeringEnvironmentGoalsHydrogelsIn VitroMedicalMetabolicMethodsModificationOrgan TransplantationOrganismPatientsPhenotypePopulationPositioning AttributeProcessResearchResolutionSignal TransductionSpecific qualifier valueStimulusStructureSupporting CellSystemTechnologyTherapeuticTherapeutic UsesTimeTissue EngineeringTissue ModelTissue constructsTissuesTranslational ResearchWorkbasebiofabricationbiological systemsbioprintingdesignexperiencein vitro Modelin vivoinnovationmeetingsmodel buildingreplacement tissueresponsethree dimensional structuretranslational medicinetwo-dimensional
项目摘要
Abstract
Within healthy adult tissues, a developing organism, and disease environments alike, cells exist in environments
where they receive and integrate external signals according to a phenotypic state, yielding responses in
cellular activities and behaviors or modifications to phenotypic state. Fundamental understanding of cellular
functioning and disease progression depends in part on our ability to systematically build and perturb model
cellular systems in vitro, and pressing biomedical challenges in translational medicine might be addressed
through the technology that enables breakthroughs in tissue engineering, including in meeting the critical
needs of patients awaiting organ transplants. Over the past decades, a range of biofabrication technologies
have been used to precisely arrange cells and materials within two- and three-dimensional structures. These
technologies have broadened our understanding biology and increased the complexity of tissue constructs that
might be used therapeutically. While biofabrication approaches developed over this time have greatly
benefitted our abilities to probe and understand biological questions—especially with respect to cells and their
environments—and to engineer cell-material constructs that recapitulate features of native tissues, significant
challenges persist in building multiscale biomimetic tissue constructs. Our lab’s research is focused on
addressing these challenges through the development and application of new biofabrication technologies that
are based on innovation in the design and use of hydrogel biomaterials. Within the next five years, the lab aims
to develop and apply unique hydrogel-based technology to bioprinting to address the critical need for
capabilities to create vascularized tissue constructs in which cell and material complexity can be specified in
extravascular regions and that can support dense cell populations. The lab will also develop new biofabrication
technologies that will allow unique capabilities for high resolution control over cellular and material structures
within macroscale constructs, with the goal of being able to simultaneously control a broad range of
microenvironmental features—including cell-cell interactions, biochemical cues, and biomechanical cues—that
a given cell experiences. We aim to develop technological capabilities and ultimately apply these capabilities to
building complex tissue constructs that might be used as platforms for studying tissue and vascular responses
to perturbations by physical and biological stimuli and to address key challenges in tissue engineering to
develop therapeutic tissue constructs. The work in this proposal thus aims to advance capabilities in the fields
of biofabrication and tissue engineering, with broad potential impacts in applied and translational research.
摘要
在健康的成人组织、发育中的有机体和疾病环境中,细胞都存在于环境中。
在那里,它们根据表型状态接收和整合外部信号,在
细胞活动和行为或对表型状态的修饰。对细胞的基本了解
功能和疾病进展在一定程度上取决于我们系统地建立和干扰模型的能力
体外细胞系统,以及转化医学中紧迫的生物医学挑战可能会被解决
通过能够实现组织工程突破的技术,包括满足关键的
等待器官移植患者的需求。在过去的几十年里,一系列的生物制造技术
已经被用来在二维和三维结构中精确地排列细胞和材料。这些
技术拓宽了我们对生物学的理解,增加了组织结构的复杂性,
可能会被用于治疗。虽然在这段时间里发展起来的生物制造方法已经大大
有益于我们探索和理解生物问题的能力--特别是关于细胞及其
环境-以及设计细胞材料结构,概括自然组织的特征,意义重大
在构建多尺度仿生组织结构方面仍然存在挑战。我们实验室的研究主要集中在
通过开发和应用新的生物制造技术来应对这些挑战
基于水凝胶生物材料的设计和使用方面的创新。在未来五年内,该实验室的目标是
开发和应用独特的基于水凝胶的技术用于生物打印,以满足以下关键需求
创建血管化组织结构的能力,其中细胞和材料的复杂性可以在
血管外区域,这可以支持密集的细胞群体。该实验室还将开发新的生物制造
将允许对细胞和材料结构进行高分辨率控制的独特能力的技术
在宏观结构中,目标是能够同时控制广泛的
微环境特征--包括细胞-细胞相互作用、生化线索和生物力学线索--
一个给定的细胞体验。我们的目标是开发技术能力,并最终将这些能力应用于
构建复杂的组织结构,可用作研究组织和血管反应的平台
对物理和生物刺激的扰动,并解决组织工程中的关键挑战
开发治疗性组织结构。因此,这项提案中的工作旨在提高实地能力
生物制造和组织工程,在应用和翻译研究方面具有广泛的潜在影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher B Highley其他文献
Christopher B Highley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher B Highley', 18)}}的其他基金
Building biophysical and biochemical complexity in 3D cell and tissue constructs
在 3D 细胞和组织结构中构建生物物理和生化复杂性
- 批准号:
10701919 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant














{{item.name}}会员




