Elucidating and Directing Heteromolecular Mechanobiology with Nanoengineered Cell Interfaces
用纳米工程细胞界面阐明和指导异分子力学生物学
基本信息
- 批准号:10501851
- 负责人:
- 金额:$ 40.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedBehaviorCell physiologyCell surfaceCellsCellular biologyComplexCuesCustomEnvironmentExtracellular MatrixFibroblastsGoalsGrowth Factor ReceptorsIn VitroIntegrinsKnowledgeLaboratoriesLigandsMediatingMethodologyMethodsModelingMolecularNanotechnologyResearchRoleSignal TransductionSurfaceSystemT-Cell ReceptorT-LymphocyteTechnologybasecellular engineeringin vivoinsightintercellular communicationmechanotransductionnanoengineeringnovel diagnosticsnovel therapeuticsreceptorsegregationsingle moleculesynthetic biology
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite recent progresses in mechanobiology research, there is still a fundamental knowledge gap in critical
cellular functions and molecular mechanisms, which take place between the molecular and cellular scale. For
systematic, quantitative and deterministic studies, there are key challenges to achieve single-molecule precision,
heteromolecular control, simultaneous and independent modulation of multiple physicochemical cues. Based on
our unique approach combining top-down nanotechnology and bottom-up synthetic biology, we will overcome
these challenges and create “smart” cell interfaces which could probe, sense and manipulate cells and the
microenvironment, in an unparalleled precise and controllable manner. The overarching goal of my laboratory is
to bring molecular insights into cell biology, and advance the knowledge of cell as a machine, whose behaviors
and functions can be predicted and directed.
Based on our discoveries in geometric underpinning of molecular mechanobiology, we will address three
outstanding questions: (i) What underlies the spatial effects in receptor clustering, and how are they force-
mediated? (ii) Are there heteromolecular spatial effects in co-clustering and segregation of different receptors,
and what are their roles in signaling crosstalk and integration? (iii) How to use the new knowledge in molecular
mechanisms and effectively direct cell functions? Considering the interplay and crosstalk between multiple
receptors and physicochemical cues, we will reveal the underlying synergistic mechanisms of heteromolecular
mechanobiology for cell-extracellular matrix (ECM) signaling (fibroblast as a model) and cell-cell signaling (T cell
as a model). Specifically, for cell-ECM signaling, we will investigate the integrin clustering mechanism, its
relationship with cellular contractility, and the crosstalk between growth factor receptors and integrins. For cell-
cell juxtacrine signaling, we will investigate the synergistic mechanism of mechanosensing and spatial sensing
in T cell receptor clustering and triggering, and the heteromolecular co-clustering mechanism between activatory
and inhibitory receptors. Finally, the artificial ECM and artificial cell surfaces we developed in this research will
be used to direct critical cell functions for in vitro cell engineering and manufacturing, as well as potential in vivo
applications.
Overall, our technology will break the limit of mechanobiology study with a single type of bioligands on 2D, rigid,
static surfaces, provide heteromolecular control over multiple ligands in a 3D, soft, dynamic fashion, and
therefore better mimic the complex in vivo environment. This transformative methodology can be customized
and adopted in distinct systems to expand our understanding of fundamental molecular and cellular mechanisms,
and apply the new knowledge for novel diagnostic and therapeutic methods.
项目概要/摘要
尽管机械生物学研究最近取得了进展,但关键领域仍然存在基础知识差距
发生在分子和细胞尺度之间的细胞功能和分子机制。为了
系统性、定量性和确定性研究,实现单分子精度面临关键挑战,
异分子控制,同时和独立调节多种物理化学线索。基于
我们独特的方法结合了自上而下的纳米技术和自下而上的合成生物学,我们将克服
这些挑战并创造了“智能”细胞接口,可以探测、感知和操纵细胞和
微环境,以无与伦比的精确和可控的方式。我实验室的总体目标是
将分子洞察带入细胞生物学,并推进细胞作为机器的知识,其行为
并且功能是可以预测和指导的。
基于我们在分子力生物学几何基础方面的发现,我们将解决三个问题
悬而未决的问题:(i)受体聚集的空间效应的基础是什么,以及它们如何迫使-
调解? (ii) 不同受体的共聚和分离是否存在异分子空间效应,
它们在信号串扰和集成中的作用是什么? (iii) 如何运用分子生物学的新知识
机制并有效指导细胞功能?考虑多个设备之间的相互作用和串扰
受体和理化线索,我们将揭示异分子的潜在协同机制
细胞-细胞外基质 (ECM) 信号传导(成纤维细胞作为模型)和细胞-细胞信号传导(T 细胞)的力学生物学
作为模型)。具体来说,对于细胞 ECM 信号传导,我们将研究整合素聚类机制及其
与细胞收缩力的关系,以及生长因子受体和整合素之间的串扰。对于细胞-
细胞近分泌信号传导,我们将研究机械传感和空间传感的协同机制
T细胞受体聚集和触发,以及激活剂之间的异分子共聚集机制
和抑制性受体。最后,我们在本研究中开发的人工 ECM 和人工细胞表面将
用于指导体外细胞工程和制造的关键细胞功能以及潜在的体内细胞功能
应用程序。
总体而言,我们的技术将突破单一类型生物配体在二维、刚性、
静态表面,以 3D、柔软、动态的方式提供对多个配体的异分子控制,以及
因此更好地模拟复杂的体内环境。这种变革性的方法可以定制
并在不同的系统中采用,以扩展我们对基本分子和细胞机制的理解,
并将新知识应用于新的诊断和治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haogang Cai其他文献
Haogang Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haogang Cai', 18)}}的其他基金
Elucidating and Directing Heteromolecular Mechanobiology with Nanoengineered Cell Interfaces
用纳米工程细胞界面阐明和指导异分子力学生物学
- 批准号:
10700992 - 财政年份:2022
- 资助金额:
$ 40.91万 - 项目类别:
Support for Undergraduate Summer Research Experience
对本科生暑期研究经验的支持
- 批准号:
10810270 - 财政年份:2022
- 资助金额:
$ 40.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.91万 - 项目类别:
Research Grant














{{item.name}}会员




