Monitoring of Glaucoma Patients in Advanced Disease

晚期青光眼患者的监测

基本信息

项目摘要

Project Summary Individuals with advanced glaucomatous damage have markedly impaired visual function resulting in a decreased quality of life. This proposal will provide the longitudinal follow-up to fill in important gaps in our knowledge about monitoring eyes with advanced open angle glaucoma (OAG). Monitoring of the disease in its advanced stages is challenging because the visual field island shrinks to such an extent that only the central visual field survives and measurement of the retinal nerve fiber layer thickness reaches a floor, after which more thinning is not detectable. The overall objectives of this application are (i) to characterize the macular structural (microvasculature and thickness) and functional changes in eyes with advanced OAG and (ii) to develop novel models that can detect and predict progression in these eyes. The central hypothesis is that novel statistical and artificial intelligence-based analyses of central visual field functional status and recently developed macular optical imaging measurements will improve monitoring of disease in advanced OAG eyes. There is a critical need for models that can predict glaucomatous progression in advanced OAG eyes and to characterize longitudinal loss of macular structure and function in order to advise clinical decision making. The central hypothesis will be tested by 3 Specific Aims. Aims 1 and 2 will develop and validate models for detection of OAG progression using the central 10 degree visual field and characterize patterns of the longitudinal changes in the central visual field and retina. Cluster-based progression methods will be applied in vulnerable and less vulnerable zones of the 10-2 visual field. Nested multivariable linear mixed effects models will be used to compare rates of macula structure (ganglion cell layer and vessel density) and functional change (in eyes with Mean Deviation <-8 dB) and to characterize the relationships between baseline patterns of visual field and structural loss and glaucoma progression while adjusting for inter-eye correlation. In Aim 3, we will apply novel deep learning techniques to macular function and recently developed optical imaging measurements to improve the prediction accuracy of glaucomatous progression in advanced disease. Complex functional and structural tests in daily use by eye care providers contain hidden information that is not fully used in the current analyses and advanced pattern recognition/machine learning-based analysis techniques can find and use that hidden information. We will use mathematically rigorous unsupervised techniques such as archetypal analysis and multimodal deep learning to discover patterns of defects and assess the risk of changes in longitudinal series of perimetric and optical imaging data from >500 patients, available in our NIH-supported glaucoma database. The proposed work is significant because it will lead to development of more effective mathematically-based, validated methods of detecting OAG progression in eyes with advanced disease. Moreover, it will reduce the cost of glaucoma care by identifying high-risk patients that require more aggressive treatment, thus decreasing disability and reducing the burden of glaucoma blindness.
项目摘要 具有晚期青光眼损伤的个体显着受损的视觉功能,导致 生活质量下降。该提议将提供纵向后续行动,以填补我们的重要空白 关于用高级敞开角色(OAG)监测眼睛的知识。监测疾病 高级阶段具有挑战性,因为视觉田地岛缩小到以至于只有中央 视野存活,视网膜神经纤维层厚度的测量到达地板,之后 无法检测到更多的稀疏。该应用程序的总体目标是(i)表征黄斑 结构性(微举行和厚度)以及具有晚期OAG的眼睛的功能变化,(II)至 开发可以检测和预测这些眼睛进展的新型模型。中心假设是 基于中央视野功能状态的新型统计和人工智能分析以及最近 开发的黄斑光学成像测量将改善对晚期OAG眼睛中疾病的监测。 对于可以预测高级OAG眼中青光眼进展的模型的迫切需要 表征黄斑结构和功能的纵向丧失,以建议临床决策。这 中央假设将通过3个特定目标进行检验。目标1和2将开发和验证模型 使用中央10度视野检测OAG进展,并表征 中央视野和视网膜的纵向变化。基于群集的进程方法将应用于 10-2视野的脆弱且脆弱的区域。嵌套的多变量线性混合效应模型 将用于比较黄斑结构(神经节细胞层和血管密度)和功能性的速率 改变(在平均偏差<-8 dB的眼睛中),并表征基线模式之间的关系 在调整眼间相关性的同时,视野和结构损失和青光眼进展。在AIM 3中, 我们将把新颖的深度学习技术应用于黄斑功能,并最近开发了光学成像 测量以提高晚期疾病中青光眼进展的预测准确性。 眼部护理提供商日常使用中的复杂功能和结构性测试包含的隐藏信息不是 完全用于当前分析和基于高级模式识别/基于机器学习的分析 技术可以找到并使用隐藏的信息。我们将使用数学上严格的无监督 原型分析和多模式深度学习等技术,以发现缺陷的模式和 评估来自500名患者的纵向周长和光学成像数据变化的风险, 在我们的NIH支持的青光眼数据库中可用。拟议的工作很重要,因为它将导致 开发更有效的基于数学的,经过验证的检测眼睛进展的方法 患有晚期疾病。此外,它将通过识别高危患者来降低青光眼护理的成本 需要更具积极性的治疗,从而减少残疾并减轻青光眼失明的负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sasan Moghimi Araghi其他文献

Sasan Moghimi Araghi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sasan Moghimi Araghi', 18)}}的其他基金

Monitoring of Glaucoma Patients in Advanced Disease
晚期青光眼患者的监测
  • 批准号:
    10680523
  • 财政年份:
    2022
  • 资助金额:
    $ 51.56万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 51.56万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 51.56万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 51.56万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 51.56万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 51.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了