Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
基本信息
- 批准号:10501038
- 负责人:
- 金额:$ 32.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAffectBehavior ControlBiologicalCellsChemicalsColorConsumptionDetectionFluorescenceGene SilencingGeneticImageIon ChannelLaboratoriesLasersLightLocationLogicManualsMethodsMolecular TargetNeuronsOpticsOrganellesOutputPharmaceutical PreparationsProtein EngineeringProteinsRadiationResolutionSamplingScanningSignal TransductionSiteSpeedSystemTechniquesTechnologyTimeTransfectionabsorptionbasebiological systemscontrolled releasedesigndigitalenzyme activityimprovedinhibitorinterestlaser tweezerneuroregulationoptogeneticsphoto switchportabilityprototypesmall molecule inhibitorsubmicron
项目摘要
PROJECT SUMMARY
The capability to precisely control behaviors of biomolecules in living cells is a challenging task. Current methods
can be classified into chemical-based and laser-based approaches. For example, small molecule inhibitors or
activators can be introduced into the biological system for manipulating enzyme activities. However, it is
impossible to control the interaction locations with high precision, which poses off-target effects. Protein control
using genetic methods such as gene silencing or editing might selectively impact a targeted protein, but requires
transfection and incubation, and cannot be performed in real-time. Optical techniques such as optical tweezers
can manipulate small targets at the laser focus, but can only interact with a few targets at a time. Current laser
manipulation and ablation methods usually require a pre-acquired image together with a manual selection of
target locations on samples. This method is not only time-consuming but also unsuitable to apply to highly
dynamic living biological samples. Optogenetic methods can control neuron functions using light radiation and
light-sensitive ion channels, but only at the single-cell level. There’s no existing technology that can select
molecular targets in cells and control only these targets at sub-micron resolution in real-time.
In this application, we develop a real-time precision opto-control (RPOC) platform that can selectively and
precisely control biomolecules only at the desired interaction site using lasers. RPOC is based on a high-speed
laser scanning system. First, during the laser scanning, an optical signal is generated at a specific pixel from the
target molecule. Then, this optical signal will be compared with a preset threshold and to send out an electronic
signal to control an acousto-optic modulator which is used as a fast switch to couple another laser beam to
interact with the same pixel. The optical signal detection, processing, and laser control happen within 20 ns,
much faster than the pixel dwell time. Digital logic circuits will also be designed with the comparator circuits to
control the interaction laser beam based on the logic output from multiple signal channels. We will use photo-
switchable proteins and design photo-convertible inhibitors and activators to demonstrate precision control of
enzyme activities on site. Furthermore, we will use multiple continuous-wave lasers and acousto-optic tunable
filters to design a portable and multicolor RPOC that can operate outside an optical lab. RPOC can accurately
control and manipulate biomolecules in real-time without affecting other biomolecules in the system. It is highly
chemical selective since the optical signal can be selected from fluorescence, Raman, or absorption signals. It
will allow biologists to control and interrogate only the biomolecules of interest during laser scanning without
affecting other parts of the sample with sub-micron precision. RPOC would be widely applied to study enzyme
activities in cells, understand organelle interactions, improve controlled-release of drugs, and perform precision
neuromodulation.
项目摘要
精确控制活细胞中生物分子行为的能力是一项具有挑战性的任务。当前方法
可以分为基于化学和基于激光的方法。例如,小分子抑制剂或
可将活化剂引入生物系统中以操纵酶活性。但据
不可能以高精度控制交互位置,这造成了脱靶效应。蛋白对照
使用基因沉默或编辑等遗传方法可能会选择性地影响靶蛋白,但需要
转染和孵育,并且不能实时进行。光学技术,如光镊
可以操纵激光焦点处的小目标,但一次只能与少数目标互动。当前激光
操作和消融方法通常需要预先获取的图像以及手动选择
样本上的目标位置。这种方法不仅费时,而且不适用于高度
动态活体生物样本光遗传学方法可以使用光辐射控制神经元功能,
光敏离子通道,但仅限于单细胞水平。没有现有的技术可以选择
细胞中的分子目标,并仅以亚微米分辨率实时控制这些目标。
在这个应用中,我们开发了一个实时精密光控(RPOC)平台,可以选择性地和
使用激光仅在期望的相互作用位点精确控制生物分子。RPOC基于高速
激光扫描系统首先,在激光扫描期间,在来自像素的特定像素处生成光信号。
靶分子。然后,该光信号将与预设阈值进行比较,并发出电子信号。
用于控制声光调制器的信号,该声光调制器用作快速开关以将另一激光束耦合到
与同一个像素相互作用。光信号检测、处理和激光控制在20 ns内发生,
比像素停留时间快得多。数字逻辑电路也将与比较器电路一起设计,
基于来自多个信号通道的逻辑输出来控制所述相互作用激光束。我们将使用照片-
可转换蛋白质和设计光转换抑制剂和激活剂,以证明精确控制
现场酶活性。此外,我们将使用多个连续波激光器和声光可调谐
滤光片设计一个便携式和可扩展的RPOC,可以在光学实验室外运行。RPOC可以准确地
实时控制和操纵生物分子,而不影响系统中的其他生物分子。极有
化学选择性,因为光信号可以选自荧光、拉曼或吸收信号。它
将允许生物学家在激光扫描期间仅控制和询问感兴趣的生物分子,
以亚微米的精度影响样品的其他部分。RPOC在酶的研究中有着广泛的应用前景
细胞中的活动,了解细胞器的相互作用,改善药物的控释,并执行精确
神经调节
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Zhang其他文献
Chi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Zhang', 18)}}的其他基金
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
- 批准号:
10810420 - 财政年份:2022
- 资助金额:
$ 32.55万 - 项目类别:
Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
- 批准号:
10797262 - 财政年份:2022
- 资助金额:
$ 32.55万 - 项目类别:
Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
- 批准号:
10693950 - 财政年份:2022
- 资助金额:
$ 32.55万 - 项目类别:
Single cell analysis and live imaging of tissue stem cells and cancer initiating cells
组织干细胞和癌症起始细胞的单细胞分析和实时成像
- 批准号:
10065416 - 财政年份:2020
- 资助金额:
$ 32.55万 - 项目类别:
Single cell analysis and live imaging of tissue stem cells and cancer initiating cells
组织干细胞和癌症起始细胞的单细胞分析和实时成像
- 批准号:
10228098 - 财政年份:2020
- 资助金额:
$ 32.55万 - 项目类别:
Perturbation based single cell investigation of tumor micro-environment
基于扰动的肿瘤微环境单细胞研究
- 批准号:
10679051 - 财政年份:2020
- 资助金额:
$ 32.55万 - 项目类别:
Perturbation based single cell investigation of tumor micro-environment
基于扰动的肿瘤微环境单细胞研究
- 批准号:
10634833 - 财政年份:2020
- 资助金额:
$ 32.55万 - 项目类别:
相似国自然基金
ZAG通过ATF4/LAMP3调控轴影响帕金森病自噬-溶酶体功能和多巴胺能神经元存活的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
长期定位施肥下紫色水稻土羟基自由基生成及其对甲基汞降解的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
长期滑移型岩质滑坡滑带的宏细观特性及其对稳定性影响研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
山区整治河道湍流拟序结构对鱼卵漂流与发育的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
光配方对无土结甘薯源库关系的影响及其机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
西南城市地区含氧有机分子(OOMs)对纳米颗粒物生成与生长过程的影响研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
解磷细菌对川党参生长、品质及根际土壤微环境的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
增视合剂对肝血不足型儿童青少年轻中度近视黄斑区脉络膜血流及其厚度影响的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
膀胱功能训练联合隔物灸对卒中后神经源性膀胱患者的膀胱功能和生活质量影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
乌梅三豆饮治疗慢性荨麻疹的疗效观察及对血清 IgE的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.55万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists