Regulation of cell death and disease by a novel membrane protein MADMAN.
新型膜蛋白 MADMAN 调节细胞死亡和疾病。
基本信息
- 批准号:10501147
- 负责人:
- 金额:$ 29.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisBacterial InfectionsBiochemicalCASP8 geneCRISPR/Cas technologyCathepsins BCell DeathCell membraneCellsCellular biologyChemicalsCommunicable DiseasesCytosolDataDefectDevelopmentDimerizationDiseaseEmbryoGoalsHT29 CellsHealthHumanIn VitroInfectionInflammationInflammatoryInvestigationKnock-outLeadLinkLysosomesMalignant NeoplasmsMembraneMembrane ProteinsMolecularMusN-terminalNamesNecrosisNerve DegenerationPathway interactionsPatternPeptide HydrolasesPhosphorylationPhosphotransferasesPlayPolymersProteinsRecombinantsRegulationResistanceRoleRuptureSignal TransductionSwellingSystemic Inflammatory Response SyndromeTNF geneTransmembrane DomainVirus Diseasescell killingcytokinedisulfide bondforward geneticshuman diseaseimmunogenicin vivoinhibitorinsightknock-downnovelnovel therapeutic interventionoverexpressionpolymerizationreceptorrecruitreverse geneticssmall hairpin RNAtissue injurywhole genome
项目摘要
Project summary
Necroptosis is a recently discovered immunogenic necrotic cell death pathway. Distinct from apoptosis, it is characterized
by cellular swelling, membrane rupture and release of damaged-associated molecular patterns (DAMPs). It is implicated in
an array of human diseases, including infection, inflammation, tissue injury, cancer and neurodegeneration. Upstream
signals, including cytokines such as TNF, viral infection or bacterial infection converge on receptor-interacting kinase 3
(RIPK3) and its substrate mixed lineage kinase-like protein MLKL. Phosphorylation of MLKL by RIPK3 drives MLKL
polymerization and membrane translocation, leading to plasma membrane disruption. However, how MLKL membrane
translocation is regulated and how membrane rupture is achieved are still under debate. The overall goal of this proposal is
to define the role of a novel membrane protein MADMAN in necroptosis during development and disease state. Using a
whole-genome CRISPR-Cas9 knockout screen, we identified a novel protein that is required for necroptosis induced by
dimerization of N-terminal domain (NTD) of MLKL. We named this protein MADMAN for MLKL-associated membrane
activator of necroptosis. MADMAN contains two putative transmembrane domains and forms disulfide bond-linked
oligomers on the lysosomal membrane. Our preliminary results demonstrate that MADMAN interacts with MLKL upon
necroptosis induction and recruits MLKL to the lysosomal membrane, leading to lysosomal membrane permeabilization
(LMP). Furthermore, overexpression of MADMAN is sufficient to induce MLKL-dependent necroptosis. Importantly,
Madman-/- mice are resistant to TNF-induced systemic inflammatory response syndrome (SIRS), confirming its essential
function in necroptosis in vivo. In this proposal, we want to define the mechanism by which MADMAN regulates MLKL
activation to activate necroptosis. Specifically, we will characterize membrane localization of MADMAN and define how
MADMAN and MLKL interaction regulates MLKL localization. We will also investigate how MADMAN promotes MLKL
polymerization which leads to LMP. Furthermore, we will examine how Madman-/- mice respond to TNF-induced systemic
inflammatory response syndrome and if loss of Madman rescues embryonic lethality caused by Caspase 8 deficiency. Lastly,
we will investigate the role of LMP and lysosomal proteases in necroptosis execution. Answering these questions will lead
us to a better understanding of how necroptosis is executed at the molecular level and provide new therapeutic strategies for
diseases associated with hyperactivation of necroptosis. Our proposal uses a combination of forward genetics, reverse
genetics, biochemical and cell biology approaches to decipher the role of a novel membrane protein MADMAN in
necroptosis. It will answer very important questions regarding MLKL membrane translocation, polymerization and
membrane disruption. These studies will provide novel molecular insights into the necroptosis pathway, which may lead to
new therapeutic strategies for treating necroptosis-associated inflammatory and infectious disease.
项目摘要
坏死性凋亡是最近发现的免疫原性坏死细胞死亡途径。与细胞凋亡不同,
通过细胞肿胀、膜破裂和损伤相关分子模式(DAMP)的释放。它牵涉到
一系列人类疾病,包括感染、炎症、组织损伤、癌症和神经变性。上游
信号,包括细胞因子如TNF、病毒感染或细菌感染会聚于受体相互作用激酶3
(RIPK 3)及其底物混合谱系激酶样蛋白MLKL。RIPK 3对MLKL的磷酸化驱动MLKL
聚合和膜易位,导致质膜破坏。然而,如何MLKL膜
易位是如何调节的以及膜破裂是如何实现的仍在争论中。本提案的总体目标是
确定一种新的膜蛋白MADMAN在发育和疾病状态期间的坏死性凋亡中的作用。使用
通过全基因组CRISPR-Cas9敲除筛选,我们鉴定了一种新的蛋白质,该蛋白质是由
MLKL的N-末端结构域(NTD)的二聚化。我们将这种蛋白质命名为MADMAN,用于MLKL相关膜
坏死性凋亡激活剂MADMAN含有两个假定的跨膜结构域,并形成二硫键连接的
溶酶体膜上的低聚物。我们的初步结果表明,MADMAN与MLKL相互作用,
坏死性凋亡诱导并将MLKL募集至溶酶体膜,导致溶酶体膜透化
(LMP)。此外,MADMAN的过表达足以诱导MLKL依赖性坏死性凋亡。重要的是,
Madman-/-小鼠对TNF诱导的全身炎症反应综合征(SIRS)具有抗性,证实了其重要性。
在体内坏死性凋亡中的作用。在本提案中,我们希望定义MADMAN调节MLKL的机制
激活坏死性凋亡。具体来说,我们将描述MADMAN的膜定位,并定义如何
MADMAN和MLKL相互作用调节MLKL定位。我们还将调查MADMAN如何宣传MLKL
聚合,导致LMP。此外,我们将研究Madman-/-小鼠如何对TNF诱导的系统性免疫应答。
炎症反应综合征和如果Madman的丧失挽救了由半胱天冬酶8缺陷引起的胚胎致死。最后,
我们将研究LMP和溶酶体蛋白酶在坏死性凋亡执行中的作用。回答这些问题将导致
我们更好地了解如何在分子水平上执行坏死性凋亡,并提供新的治疗策略,
与坏死性凋亡过度活化有关的疾病。我们的方案结合了正向遗传学,反向遗传学
遗传学,生物化学和细胞生物学方法来破译一种新的膜蛋白MADMAN在
坏死性凋亡它将回答关于MLKL膜易位、聚合和
膜破裂这些研究将为坏死性凋亡途径提供新的分子见解,这可能导致
用于治疗坏死性凋亡相关的炎性和感染性疾病的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhigao Wang其他文献
Zhigao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhigao Wang', 18)}}的其他基金
Molecular and chemical regulations of necrotic cell death pathways
坏死细胞死亡途径的分子和化学调控
- 批准号:
10474826 - 财政年份:2017
- 资助金额:
$ 29.92万 - 项目类别:
相似海外基金
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Derivation and validation of a clinical prediction rule to identify febrile infants 61 to 90 days old at low and non-negligible risk of invasive bacterial infections
推导和验证临床预测规则,以识别 61 至 90 天大的发热婴儿,其侵袭性细菌感染的风险较低且不可忽略
- 批准号:
10574286 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
A gut feeling: How can gastrointestinal bacterial infections alter female reproductive tract immunity and control of sexually transmitted infections
直觉:胃肠道细菌感染如何改变女性生殖道免疫力和性传播感染的控制
- 批准号:
MR/X031993/1 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Research Grant
Molecular probes to diagnose pathoadapatations in bacterial infections
诊断细菌感染病理适应的分子探针
- 批准号:
EP/X014479/1 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Research Grant
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
SimCell vaccines against Staphylococcus aureus bacterial infections
针对金黄色葡萄球菌细菌感染的 SimCell 疫苗
- 批准号:
10073241 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Grant for R&D
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Multidimensional development of high-affinity anti-glycan antibodies to fight deadly bacterial infections
多维开发高亲和力抗聚糖抗体以对抗致命细菌感染
- 批准号:
10549640 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:














{{item.name}}会员




