I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics

I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of antibiotics to mitigate multidrug resistant bacterial infections. Antibiotic resistance is a global public health crisis, and “one of our most serious health threats” according to the CDC. The world has witnessed a surge of superbugs that elude one or more antibiotics at an alarming rate. This situation is exacerbated by the lack of new antibiotics in the pipeline and increasing accumulation of artificial antibiotic wastes in natural habitats that further accelerates resistome development. Membrane-active antimicrobials (MAAs) have been widely anticipated to be promising candidates for new antibiotics. However, toxicity is one of the biggest barriers to the translation of MAAs to the market, of which the indiscriminate hydrophobic interaction that disrupts both bacterial and mammalian membranes is a major contributing factor. The proposed technology uses hydrophilic nanoantibiotics that kill bacteria, including multidrug resistant (MDR) bacterial strains, highly efficiently without damaging mammalian cells. In addition, they have been shown to undergo rapid degradation and deactivation by enzymes that exist in natural habitats when released as wastes. This technology potentially may be used to solve the crisis of antibiotic resistance.This I-Corps project is based on the development of biocompatible and environmentally benign nanoantibiotics. The proposed technology has demonstrated that assembly of hydrophilic and antimicrobial inactive linear-chain polymers into nanostructured polymer molecular brushes (PMBs) turns “ON” their antimicrobial activities collectively, while disassembly of the nanostructured PMBs turns the acquired activities “OFF”. In addition, nanoantibiotics have been shown to kill bacteria by selectively disrupting the bacterial membranes while remaining benign to mammalian cells. Because this mode of damage acts on bacterial membranes instead of targeting biosynthetic pathways as conventional antibiotics do, it is extremely difficult for bacteria to produce resistant strains. Nanoantibiotics low toxicity to mammalian cells further suggests that they have a great potential for clinical use. In addition, the environmentally degradable nanoantibiotics help solve the long-standing problem of continuous accumulations of antibiotic wastes in natural habitats, which alters the structure and function of the microbial community in sensitive ecosystems, threatens food and water security, and accelerates the development of the resistome. The development of environmentally degradable nanoantibiotics may represent a milestone in the search for new antibiotics and may have commercialization potential to fight drug-resistant bacterial infections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发抗生素以减轻多重耐药细菌感染。抗生素耐药性是一个全球性的公共卫生危机,根据CDC的说法,它是“我们最严重的健康威胁之一”。世界已经见证了超级细菌的激增,它们以惊人的速度逃避一种或多种抗生素。这种情况由于缺乏新的抗生素而加剧,并且人工抗生素废物在自然栖息地的积累越来越多,进一步加速了耐药基因组的发展。膜活性抗菌剂(MAA)已被广泛预期为新抗生素的有希望的候选者。然而,毒性是将MAA转化为市场的最大障碍之一,其中破坏细菌和哺乳动物膜的不加选择的疏水相互作用是一个主要因素。 该技术使用亲水性纳米抗生素,可以高效杀死细菌,包括多药耐药(MDR)菌株,而不会损害哺乳动物细胞。 此外,它们在作为废物排放时,会被自然生境中的酶迅速降解和钝化。 这项技术可能被用来解决抗生素耐药性的危机。这个I-Corps项目是基于生物相容性和环境友好的纳米抗生素的发展。所提出的技术已经证明,组装成纳米结构的聚合物分子刷(PMBs)的亲水性和抗微生物非活性的线性链聚合物打开“ON”他们的抗微生物活性集体,而拆卸的纳米结构的PMBs打开所获得的活动“OFF”。此外,纳米抗生素已被证明可以通过选择性地破坏细菌膜来杀死细菌,同时对哺乳动物细胞保持良性。由于这种损伤模式作用于细菌膜,而不是像传统抗生素那样靶向生物合成途径,因此细菌极难产生耐药菌株。纳米抗生素对哺乳动物细胞的低毒性进一步表明它们具有巨大的临床应用潜力。 此外,可环境降解的纳米抗生素有助于解决长期存在的抗生素废物在自然栖息地中持续积累的问题,这改变了敏感生态系统中微生物群落的结构和功能,威胁粮食和水安全,并加速了耐药基因组的发展。 环境可降解纳米抗生素的开发可能是寻找新抗生素的一个里程碑,并可能具有商业化潜力,以对抗耐药细菌感染。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongjun Liang其他文献

Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets
钢管夹层混凝土导管架加固钢管混凝土短柱的轴向性能
  • DOI:
    10.1016/j.tws.2020.106942
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hongjun Liang;Weijie Li;Yue Huang;Yiyan Lu
  • 通讯作者:
    Yiyan Lu
A Chemical-genetics and Nanoparticle Enabled Approach for in vivo Protein Kinase Analysis
用于体内蛋白激酶分析的化学遗传学和纳米颗粒方法
  • DOI:
    10.1101/2020.05.13.094573
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengqian Chen;Qi Liu;Terrell Hilliard;Ting;Hongjun Liang;Weimin Gao;Leaf Huang;Degeng Wang
  • 通讯作者:
    Degeng Wang
Analytical solution for predicting the interaction stress of axially loaded concrete-filled double-tube columns
  • DOI:
    10.1016/j.tws.2022.109579
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Weijie Li;Hongjun Liang;Shan Li;Yiyan Lu;Yue Huang
  • 通讯作者:
    Yue Huang
Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression
钢管混凝土加固锈蚀钢筋混凝土柱轴压强度预测
  • DOI:
    10.12989/scs.2020.37.4.481
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hongjun Liang;Yanju Jiang;Yiyan Lu;Jiyue Hu
  • 通讯作者:
    Jiyue Hu
A torsional-axial vibration analysis of drill string endowed with kinematic coupling and stochastic approach
  • DOI:
    https://doi.org/10.1016/j.petrol.2020.108157
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Jingkai Chen;Hualin Liao;Yanting Zhang;Hongjun Liang;Chuanfu Liu;Dong Qi
  • 通讯作者:
    Dong Qi

Hongjun Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongjun Liang', 18)}}的其他基金

Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
  • 批准号:
    2213969
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Nanostructure Engineering Is Another Approach Toward Membrane-Active Antimicrobials with Desirable Activity and Selectivity
纳米结构工程是开发具有理想活性和选择性的膜活性抗菌剂的另一种方法
  • 批准号:
    1810767
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1623240
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1623241
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1410825
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1160291
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Fellowship
Mitigating the Influence of Social Bots in Heterogeneous Social Networks
减轻异构社交网络中社交机器人的影响
  • 批准号:
    DP240100181
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
IMPLEMENTATION: Shifting Culture and Mitigating Inequities in Landscape Ecology Through a Collaborative Network of Professional Societies
实施:通过专业协会的合作网络转变文化并减轻景观生态学中的不平等
  • 批准号:
    2335225
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Temporary Pacing Leads - Scoping and Mitigating Environmental Impact
临时起搏导联 - 界定和减轻环境影响
  • 批准号:
    10086805
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了