Design Principles of Size-Control of Organelles Growing in a Shared Pool of their Building Blocks
在其构件共享池中生长的细胞器尺寸控制的设计原理
基本信息
- 批准号:10501369
- 负责人:
- 金额:$ 35.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-10 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisBiochemicalBiological ModelsCell NucleolusCellsCharacteristicsCollaborationsDevelopmentDiseaseFeedbackGoalsGrowthHumanIndividualLengthMathematical Model SimulationMediatingModelingMolecularNeurodegenerative DisordersOrganellesParkinson DiseaseProteinsResearchResourcesRunningSchemeShapesStructureTechniquesTestingWorkcombatdesignexperimental studyhigh dimensionalitynovel therapeuticsprogramssimulationtheoriestool
项目摘要
ABSTRACT
Living cells contain a variety of distinguishable parts called organelles which have characteristic sizes and
specific functions. These organelles grow in a shared pool of their respective building blocks, and are remarkably
able to maintain their structure despite a rapid exchange of their building blocks. This prompts a question: how
are the sizes of organelles growing in a shared pool of building blocks actively controlled by the cell? Years of
biochemical experiments have revealed a plethora of proteins involved with these structures, yet, due to the
high-dimensionality of the variables involved, how they all work together to create properly-sized organelles is
still not well understood. Mathematical modeling and simulations, thus, provide an exciting avenue to tackle
these questions, with the added benefit of identifying key tunable knobs for biochemists to run streamlined
experiments. Over the last few years, using these techniques on organelles like actin cable and flagellum, I
identified that a negative feedback to the size, mediated by a diminishing pool of building blocks or key accessory
proteins specific to the organelle, was critical in controlling the size of a growing organelle. Significantly, the key
experimental knobs that we suggested, have since been used to test the predictions of my quantitative models.
My results enabled us to understand the design principles for constructing a single structure, yet how competing
structures assemble and maintain their sizes while sharing a common pool of building blocks remains an open
question. Over the next five years, our goal is to quantitatively analyze the mechanisms used by the cell to share
building blocks between competing structures. Proteins involved in disassembly of organelles offer a solution -
in addition to disassembling pre-existing structures, they can provide key length-sensing feedback to the size of
individual structures sharing a common pool of building blocks. Using simulation schemes and theoretical tools
that I pioneered, we will identify discernible signatures of specific disassembly mechanisms, and quantitatively
describe their repercussion on the sharing of common resources between different competing structures. Using
actin structures and nucleolus as our model systems, we will design theory-driven experiments to verify our
predictions with already established collaborations, and use experimentally tunable knobs to discriminate
between different mechanisms that cells use to share building blocks between competing structures. A
quantitative understanding of molecular mechanisms affecting organelle growth will accelerate the development
of new therapies to combat many human neurodegenerative diseases such as Amyotrophic Lateral Sclerosis
(abnormalities in actin assembly) and Parkinson’s and Alzheimer’s disease (nucleolus abnormalities).
摘要
活细胞含有各种可区分的部分,称为细胞器,其具有特征性的大小和大小。
具体功能。这些细胞器在各自的构建块的共享池中生长,并且非常明显地
能够保持它们的结构,尽管它们的构建块快速交换。这就引出了一个问题:
细胞器的大小是否在一个由细胞主动控制的共享构建模块池中生长?年的
生物化学实验已经揭示了与这些结构有关的过多的蛋白质,然而,由于
所涉及的变量的高维性,它们如何一起工作以创建适当大小的细胞器,
仍然没有很好地理解。因此,数学建模和模拟提供了一个令人兴奋的途径来解决
这些问题,与额外的好处,确定关键可调旋钮的生物化学家运行精简
实验在过去的几年里,使用这些技术对细胞器,如肌动蛋白电缆和鞭毛,我
确定了一个负反馈的大小,介导的减少池的积木或关键配件
细胞器特有的蛋白质,在控制生长中的细胞器的大小方面至关重要。重要的是,关键
我们建议的实验旋钮,已经被用来测试我的定量模型的预测。
我的研究结果使我们能够理解构建单一结构的设计原则,
结构组装并保持其大小,同时共享构建块的公共池仍然是开放的
问题未来五年,我们的目标是定量分析细胞用于共享的机制
竞争结构之间的构建块。参与细胞器分解的蛋白质提供了一个解决方案-
除了拆卸预先存在的结构,它们还可以提供键长度传感反馈,
共享构建块的公共池的各个结构。使用模拟方案和理论工具
我们将识别特定拆卸机制的可识别特征,并定量地
描述它们对不同竞争结构之间共享共同资源的影响。使用
肌动蛋白结构和核仁作为我们的模型系统,我们将设计理论驱动的实验来验证我们的理论。
预测与已经建立的合作,并使用实验可调旋钮来区分
细胞在竞争结构之间共享构建模块的不同机制之间的差异。一
对影响细胞器生长的分子机制的定量理解将加速细胞器的发展,
新的治疗方法,以打击许多人类神经退行性疾病,如肌萎缩侧索硬化症
(肌动蛋白组装异常)和帕金森病和阿尔茨海默病(核仁异常)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lishibanya Mohapatra其他文献
Lishibanya Mohapatra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lishibanya Mohapatra', 18)}}的其他基金
Design Principles of Size-Control of Organelles Growing in a Shared Pool of their Building Blocks
在其构件共享池中生长的细胞器尺寸控制的设计原理
- 批准号:
10676295 - 财政年份:2022
- 资助金额:
$ 35.51万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别:
Studentship