Elucidating biophysical mechanisms for force sensing and control using non-equilibrium statistical mechanics and AI
使用非平衡统计力学和人工智能阐明力传感和控制的生物物理机制
基本信息
- 批准号:10501942
- 负责人:
- 金额:$ 38.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceBiologicalBiological ProcessBiophysical ProcessBiophysicsCell CommunicationCell ShapeCell divisionCell membraneCellsComplexComputer SimulationCytoskeletal ModelingDataDevelopmentDiseaseEnsureEquilibriumEventFoundationsGenerationsGoalsHealthHumanLengthLysosomesMachine LearningMembrane FusionMicroscopicMolecularMorphogenesisMorphologyOccupationsPatternPlayProcessRoleShapesSignal TransductionStatistical MechanicsSystemTechniquesTimeTissuesWorkbiological systemscell motilitycomputer frameworkdriving forceimmune system functionpredictive modelingresponsesingle-cell RNA sequencingtool
项目摘要
Non-equilibrium activity is crucial for maintain and modulating tissue shape, development and
morphogenesis, lysosome dynamics, cell membrane remodeling during cell division or membrane fusion
and fission events. Importantly many of these processes play a significant role in human health helping
regulate for instance immune system function and ensuring accurate developmental morphogenesis.
However, there is a major gap in our understanding of how microscopic non-equilibrium biophysical
driving forces give rise to a desired molecular response, function, or control. Indeed, while the theoretical
and computational frameworks for the study of equilibrium biological processes are very well developed,
there are very limited analogous tools for the study of complex far-from-equilibrium biological systems.
Further, the large length and time scales of biological systems and processes make explicit computational
simulations impractical.
Addressing this problem requires the development of a range of multiscale non-equilibrium statistical
mechanics techniques in combination with tools from machine learning and artificial intelligence so that
the large length and time scales associated with the above-mentioned biological processes can be
appropriately captured. The work outlined in this proposal builds towards these long-term goals by focusing
on three paradigmatic example systems 1) Understanding and predicting non-equilibrium lysosomal
dynamics and morphologies 2) Understanding and modelling cytoskeletal processes responsible for
developmental patterning, cell-cell communication, and force generation 3) Developing frameworks for
determining drivers of cell fate and differentiation from single cell RNA sequencing data. Each of these
paradigmatic examples has implications for diseases. These paradigmatic examples build on the recent
foundational non-equilibrium statistical mechanics frameworks developed by my group and expand them
so that they can be utilized in biological contexts.
非平衡活性对于维持和调节组织形状、发育和生长至关重要。
形态发生、溶酶体动力学、细胞分裂或膜融合过程中的细胞膜重塑
裂变事件。重要的是,这些过程中有许多在人类健康方面发挥着重要作用,
调节例如免疫系统功能并确保准确的发育形态发生。
然而,在我们对微观非平衡生物物理学的理解方面存在重大差距。
驱动力产生所需的分子响应、功能或控制。虽然理论上
并且用于研究平衡生物过程的计算框架非常发达,
用于研究复杂的远离平衡的生物系统的类似工具非常有限。
此外,生物系统和过程的大的长度和时间尺度使得明确的计算性成为可能。
模拟不切实际。
解决这一问题需要发展一系列多尺度非平衡统计
机械技术与机器学习和人工智能工具相结合,
与上述生物过程相关的大的长度和时间尺度可以
适当地捕捉。本提案中概述的工作通过以下方式为实现这些长期目标而努力:
1)理解和预测非平衡溶酶体
动力学和形态学2)理解和模拟细胞骨架过程,
发展模式,细胞间通讯和力量生成3)发展框架,
从单细胞RNA测序数据确定细胞命运和分化的驱动因素。这一切成功都
典型的例子对疾病有影响。这些典型的例子建立在最近的
基础非平衡统计力学框架,并扩展它们
这样它们就可以在生物学背景下使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suriyanarayanan Vaikuntanathan其他文献
Suriyanarayanan Vaikuntanathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suriyanarayanan Vaikuntanathan', 18)}}的其他基金
Elucidating biophysical mechanisms for force sensing and control using non-equilibrium statistical mechanics and AI
使用非平衡统计力学和人工智能阐明力传感和控制的生物物理机制
- 批准号:
10673871 - 财政年份:2022
- 资助金额:
$ 38.28万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 38.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)