Tracking Therapy-Resistant Alterations in Childhood Acute Lymphoblastic Leukemia
追踪儿童急性淋巴细胞白血病的治疗耐药性改变
基本信息
- 批准号:10504566
- 负责人:
- 金额:$ 44.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Lymphocytic LeukemiaAddressAffectAlgorithmsBiological AssayBloodCancer EtiologyCellsCessation of lifeChildChildhood Acute Lymphocytic LeukemiaClinical ResearchClinical TrialsClinical Trials Cooperative GroupClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCoupledCytotoxic ChemotherapyDataDetectionDiagnosisDisease remissionDominant Genetic ConditionsEnsureEventFrequenciesFutureGenomeGenomicsGoalsHandHeart failureHuman GenomeImmunotherapyIncidenceInfertilityKnowledgeLate EffectsMalignant Childhood NeoplasmMeasuresMethodsModelingMolecularNewly DiagnosedOpen Reading FramesOutcomePatientsPatternPediatric Oncology GroupPrevalenceProteinsRelapseResidual CancersResidual NeoplasmResistanceResistance profileResourcesRetrospective StudiesRiskSaint Jude Children&aposs Research HospitalSecureSpecimenSurvival RateTechnologyTestingTherapeutic AgentsTimeUntranslated RNAVariantbasecancer cellchemotherapycohortdeep sequencingdesignefficacy testingexperiencegenome sequencinghigh riskimprovedimproved outcomeinnovationinsightleukemia relapsenovelnovel therapeuticsprognosticprospectiverare variantrelapse patientsrelapse riskrisk minimizationrisk stratificationsingle cell sequencingtherapy resistanttranscriptome sequencingtreatment responsetumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Relapsed ALL is associated with poor outcome and remains the leading cause of cancer-related death among
all childhood cancer. Current therapies are toxic and can result in high incidence of late effects such as infertility
and heart failure. Thus, it has been a standard practice to allocate newly diagnosed patients to therapies based
on predicted risk of relapse. The presence of residual cancer cells after induction chemotherapy, known as
minimal residual disease (MRD), is a highly significant prognostic variable. However, many patients not
considered to be “high risk” still experience relapse. There is an unmet need to develop novel risk models
with enhanced accuracy to enable allocation of patients to risk-adapted therapies to reduce the
likelihood of future relapse. Our prior genomics studies on relapsed ALL in protein-coding regions (~2% of the
human genome) have revealed novel insights on the drivers of resistance to therapy. While these findings have
potential for developing novel molecular risk models, significant knowledge gaps remain. First, more than 50%
of relapsed cases lack any known resistance drivers. Second, the known resistance drivers are derived from
retrospective studies of relapsed specimens and it is unclear how to apply such information prospectively from
initial diagnosis to decrease the likelihood of relapse. Our goal is to develop novel molecular risk models by
tracking resistance drivers at diagnosis. Our central hypothesis is that resistance drivers, when detected at
diagnosis, will be informative for allocation of patients to risk-adapted therapies. We will test our hypothesis in
three aims. In Aim 1, we will identify comprehensive resistance drivers from both protein-coding and non-coding
regions by leveraging a large cohort of 669 relapsed childhood ALL cases from a recently completed cooperative
clinical trial with genome and transcriptome sequencing data available. We hypothesize that unexplored non-
coding regions will harbor novel resistance drivers and that the large cohort size will empower the discovery of
rare resistance drivers. In Aim 2, we will backtrack the resistance drivers at diagnosis by using ultra-deep
sequencing coupled with state-of-the-art computational error suppression that will enable detection of rare
variants with frequency as low as 0.01%. In Aim 3, we will investigate if resistance drivers pre-exist in an
independent cohort of patients at diagnosis. We will develop novel molecular risk models by comparing
prevalence profiles of resistance drivers detected at initial diagnosis between patients who have relapsed and
those who are cured. Successful completion of our project aims will deliver 1) comprehensive knowledge of
drivers of resistance to therapy, 2) the full spectrum of pre-existing resistance drivers at diagnosis, and 3) novel
molecular risk models for decreasing the risk of relapse. Our deliverables will form the basis for future clinical
trials and for developing novel therapeutic agents aimed at improving the cure rate of childhood ALL.
项目概要/摘要
复发性 ALL 与不良预后相关,并且仍然是癌症相关死亡的主要原因
所有儿童癌症。目前的疗法具有毒性,可能导致不孕等晚期效应的高发生率
和心力衰竭。因此,将新诊断的患者分配到基于治疗的治疗已成为标准做法
预测复发风险。诱导化疗后残留癌细胞的存在,称为
微小残留病(MRD)是一个非常重要的预后变量。然而,很多患者并没有
被认为是“高风险”的人仍然会复发。开发新型风险模型的需求尚未得到满足
提高准确性,使患者能够分配到适合风险的治疗方案,以减少
未来复发的可能性。我们之前对蛋白质编码区复发 ALL 的基因组学研究(约 2%)
人类基因组)揭示了对治疗耐药的驱动因素的新见解。虽然这些发现
开发新型分子风险模型的潜力,但仍然存在巨大的知识差距。第一,50%以上
的复发病例缺乏任何已知的耐药驱动因素。其次,已知的电阻驱动器源自
对复发标本进行回顾性研究,目前尚不清楚如何前瞻性地应用这些信息
初步诊断以减少复发的可能性。我们的目标是开发新颖的分子风险模型
在诊断时跟踪电阻驱动因素。我们的中心假设是,当检测到阻力驱动因素时
诊断将为患者分配风险适应疗法提供信息。我们将检验我们的假设
三个目标。在目标 1 中,我们将从蛋白质编码和非编码中识别全面的耐药驱动因素
通过利用来自最近完成的合作社的 669 例复发儿童 ALL 病例的大队列研究
具有可用基因组和转录组测序数据的临床试验。我们假设未经探索的非
编码区域将蕴藏新的耐药驱动因素,并且大的队列规模将有助于发现
罕见的阻力驱动因素。在目标 2 中,我们将通过使用超深度回溯诊断时的阻力驱动因素
测序与最先进的计算错误抑制相结合,将能够检测罕见的
频率低至 0.01% 的变体。在目标 3 中,我们将调查阻力驱动因素是否预先存在于
诊断时的独立患者队列。我们将通过比较开发新的分子风险模型
初次诊断时检测到的耐药驱动因素在复发和复发患者之间的流行情况
那些被治愈的人。成功完成我们的项目目标将提供 1) 的全面知识
治疗耐药的驱动因素,2) 诊断时预先存在的全部耐药驱动因素,以及 3) 新颖
降低复发风险的分子风险模型。我们的成果将构成未来临床的基础
试验和开发旨在提高儿童 ALL 治愈率的新型治疗药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaotu Ma其他文献
Xiaotu Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaotu Ma', 18)}}的其他基金
Tracking Therapy-Resistant Alterations in Childhood Acute Lymphoblastic Leukemia
追踪儿童急性淋巴细胞白血病的治疗耐药性改变
- 批准号:
10671557 - 财政年份:2022
- 资助金额:
$ 44.43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 44.43万 - 项目类别:
Research Grant