Development of Microbial-Based Therapies to Suppress Macropinocytosis in Kras-Driven Cancers

开发基于微生物的疗法来抑制 Kras 驱动的癌症中的巨胞饮作用

基本信息

  • 批准号:
    10502177
  • 负责人:
  • 金额:
    $ 40.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with dismal prognosis. A near-universal oncogenic driver of PDAC is the constitutive activation of the small GTPase protein Kras, which induces multiple downstream signaling cascades that together facilitate rapid cell proliferation, metastasis and therapeutic resistance. To surmount the high energy demands of these activities, Kras also triggers metabolic adaptations to promote nutrient scavenging from extracellular sources, such as through macropinocytosis. Macropinocytosis is a process by which extracellular material is non-specifically engulfed and then degraded in lysosomes to produce end-products utilized by tumor cells for biosynthesis. This process essentially confers resistance to a myriad of anabolic inhibitors. Syndecan-1 is a heparan sulfate proteoglycan (HSPG) upregulated on the surface of cells that serves as the key mediator of macropinocytosis in PDAC and other Kras-driven cancers that includes bladder, lung, prostate, colon and breast. In addition to mediating macromolecular transport, HSPGs can be found in the tumor extracellular matrix (ECM) binding to and regulating the interaction of numerous signaling molecules (e.g. growth factors and cytokines) with their cognate receptors. The pro-tumorigenic activities of HSPGs are exquisitely regulated by enzymatic modification of their heparan sulfate (HS) moieties. Mammalian heparanases employ hydrolytic cleavage of the beta-(1,4)-glycosidic bond between glucuronic acid and glucosamine to promote the release of growth factors and enzymes involved in ECM remodeling, invasion and metastasis. In contrast to mammalian heparanases, bacterial heparinase III (HepIII) depolymerizes HSPGs through a unique beta-elimination mechanism that cleaves at the alpha-(1,4)- glycosidic bond. Various studies have confirmed HepIII modification of HSPGs suppresses neovascularization, macropinocytosis, tumor growth and metastasis. However, the inability to restrict HepIII activity to tumor tissue has long prohibited its use as a therapeutic agent. Using attenuated, tumor-targeting Salmonella typhimurium (ST) vectors, we have developed the first recombinant ST expressing functional HepIII (ST-HepIII) through a tightly regulated, inducible promoter. We have confirmed the ability of ST-HepIII to suppress high-affinity HS interactions, macropinocytosis, and growth of Kras-mutant tumors. In this application, we will: 1) Determine the impact of ST-HepIII treatment on metabolite availability and metabolic-associated gene pathways in vivo; 2) Determine anti-tumor efficacy of anabolic inhibitors in combination with ST-HepIII; and 3) Develop and characterize recombinant STs expressing HepIII under tumor-inducible promoters for greater clinical feasibility. Completing these aims will allow us to develop a novel class of tumor-targeting agents capable of suppressing a metabolic process essential to the survival of PDAC and other Kras-driven cancers. Our agents may be used to counteract acquired resistance to standard-of-care therapies that target cooperative anabolic processes and positively impact survival for patients with difficult-to-treat cancers.
胰腺导管腺癌(PDAC)是一种高度侵袭性疾病。 预后。PDAC的一个几乎普遍的致癌驱动因素是小GTPase蛋白的结构性激活 KRAS,它诱导多个下游信号级联,共同促进细胞快速增殖, 转移和治疗耐药。为了克服这些活动的高能量需求,克拉斯还 触发新陈代谢适应,促进从细胞外来源清除营养物质,如通过 巨噬细胞增多症。巨噬细胞吞噬是一种细胞外物质被非特异性吞噬和 然后在溶酶体中降解,产生肿瘤细胞用于生物合成的最终产物。这一过程 本质上对无数的合成代谢抑制剂具有抵抗力。Syndecan-1是一种硫酸乙酰肝素蛋白多糖 (HSPG)上调的细胞表面作为巨噬细胞吞噬的关键介质在PDAC和 其他由Kras驱动的癌症,包括膀胱癌、肺癌、前列腺癌、结肠癌和乳腺癌。除了调解之外 大分子转运、热休克蛋白原可在肿瘤细胞外基质(ECM)中与其结合并调节 众多信号分子(如生长因子和细胞因子)与其同源受体的相互作用。 HSPG的促肿瘤活性受其肝素的酶修饰的精确调节 硫酸盐(HS)部分。哺乳动物肝素酶利用β-(1,4)-糖苷键的水解性裂解 葡萄糖醛酸和氨基葡萄糖之间促进生长因子和酶的释放参与 细胞外基质重塑、侵袭和转移。与哺乳动物肝素酶不同,细菌肝素酶III (HepIII)通过一种独特的β-消除机制解聚HSPG,该机制在α-(1,4)- 糖苷键。各种研究证实,HSPGs的HepIII修饰可以抑制新生血管, 巨噬细胞增多症与肿瘤生长和转移。然而,无法将HepIII活性限制在肿瘤组织中 长期以来一直禁止将其用作治疗剂。使用减毒、肿瘤靶向的鼠伤寒沙门氏菌 (ST)载体的基础上,构建了第一个重组ST表达功能性HepIII(ST-HepIII)。 严格调控,可诱导的启动子。我们已经证实了ST-HepIII抑制高亲和力HS的能力 Kras突变肿瘤的相互作用、巨噬细胞吞噬和生长。在本应用程序中,我们将:1)确定 ST-HepIII治疗对体内代谢物利用度及代谢相关基因途径的影响 确定合成代谢抑制剂与ST-HepIII联合的抗肿瘤效果;以及3)开发和 鉴定在肿瘤诱导启动子作用下表达HepIII的重组STS,以获得更大的临床可行性。 完成这些目标将使我们能够开发一类新型的肿瘤靶向制剂,能够抑制 对PDAC和其他Kras驱动的癌症的生存至关重要的新陈代谢过程。我们的特工可能会被 为了抵消针对合作合成代谢过程的标准护理疗法的获得性抵抗力 对难治性癌症患者的存活率有积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

EDWIN MANUEL其他文献

EDWIN MANUEL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('EDWIN MANUEL', 18)}}的其他基金

Microbial- based targeting of major extracellular matrix components for improved therapy of pancreatic cancer
基于微生物的主要细胞外基质成分靶向以改善胰腺癌的治疗
  • 批准号:
    10701792
  • 财政年份:
    2022
  • 资助金额:
    $ 40.26万
  • 项目类别:
Development of Microbial-Based Therapies to Suppress Macropinocytosis in Kras-Driven Cancers
开发基于微生物的疗法来抑制 Kras 驱动的癌症中的巨胞饮作用
  • 批准号:
    10652633
  • 财政年份:
    2022
  • 资助金额:
    $ 40.26万
  • 项目类别:
Utilizing Hybrid Antigen-Presenting Neutrophils to Prime WT1-Specific Immune Responses as Therapy for Acute Leukemia
利用混合抗原呈递中性粒细胞引发 WT1 特异性免疫反应作为急性白血病的治疗方法
  • 批准号:
    10533378
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:
Utilizing Hybrid Antigen-Presenting Neutrophils to Prime WT1-Specific Immune Responses as Therapy for Acute Leukemia
利用混合抗原呈递中性粒细胞引发 WT1 特异性免疫反应作为急性白血病的治疗
  • 批准号:
    10373124
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:

相似海外基金

Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 40.26万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 40.26万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10368975
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10365254
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10202896
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10531570
  • 财政年份:
    2021
  • 资助金额:
    $ 40.26万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10541847
  • 财政年份:
    2019
  • 资助金额:
    $ 40.26万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10319573
  • 财政年份:
    2019
  • 资助金额:
    $ 40.26万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10062790
  • 财政年份:
    2019
  • 资助金额:
    $ 40.26万
  • 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
  • 批准号:
    DE170100628
  • 财政年份:
    2017
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了