Mechanisms Driving Regenerative Neurogenesis in Planarians
涡虫再生神经发生的驱动机制
基本信息
- 批准号:10503711
- 负责人:
- 金额:$ 33.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdultAnimal ModelAnimalsAnteriorAutomobile DrivingBehaviorBehavioral AssayBiological AssayBrainCellsCephalicComplexCuesDevelopmentDopamineDorsalFailureFoundationsFresh WaterGangliaGenesGlutamatesGoalsHealthHomeostasisHumanInjuryLaboratoriesLocationMaintenanceModelingMolecularMovementMuscleNatural regenerationNatureNerveNerve RegenerationNerve TissueNervous system structureNeuraxisNeurobiologyNeurodegenerative DisordersNeuronsNeuropeptidesNeurotransmittersOrganOutcomePartner in relationshipPathway interactionsPatientsPatternPeripheral Nervous SystemPharyngeal structurePlanariansPlatyhelminthsPluripotent Stem CellsPositioning AttributeRecoveryRegenerative researchRegulationResearchRestRoleSerotoninSignal TransductionSpinal CordSpinal cord injuryStem cell transplantStimulusStrokeStructureTestingTissuesTraumatic injuryWorkbrain tissuecell injurycell typedopaminergic neuronfeedingfunctional restorationgamma-Aminobutyric Acidimprovedin vivoinjury and repairinnovationischemic injuryneural repairneurogenesisneuron regenerationnovel therapeutic interventionpost strokereconstitutionregeneration modelregenerativeregenerative therapyrelating to nervous systemrepairedresponseresponse to injurystemstem cell differentiationstem cell therapytissue regenerationtranscription factorwound
项目摘要
Project Summary
Humans regenerate tissue of the brain and spinal cord poorly. Failure to regenerate
missing or damaged cells impedes survival and recovery after neurodegenerative
disease, stroke, traumatic or ischemic injury, or developmental error. Unlike humans,
other animals can effectively repair dramatic injuries or damage within the central
nervous system. Free-living freshwater flatworms called planarians possess
extraordinary regenerative abilities, including flawless regeneration and replacement of
all brain and nerve cord tissues. After tissue loss or damage, planarians remodel
existing tissue and use adult pluripotent stem cells to replace diverse cell types,
including dozens of types of neurons. Planarians create neurons in appropriate ratios
and then repattern and reconnect neurons to targets to restore function. The long-term
goal is to discover the molecular and cellular basis of robust neural regeneration using
planarians. Toward that objective, the first specific aim is to identify and characterize
factors important for regenerative neurogenesis from pluripotent stem cells, focusing
first on regeneration of dopaminergic neurons. Four transcription factor-encoding genes
important for regeneration and maintenance of dopaminergic neuron subtypes have
already been discovered. The following specific aims will provide critical information
about how environmental cues promote brain regeneration by pluripotent stem cells in
vivo. The second specific aim is to test the hypothesis that neurogenesis is upregulated
in planarians after injury, through wound-induced signaling mechanisms. The third
specific aim is to test the hypothesis that planarian neurogenesis is driven by polarity
cues so that new neurons of the correct types are created in the proper locations. The
proposed work in this application is conceptually innovative because of the use of a
highly regenerative model organism to explore regenerative neurogenesis and because
of the development of new molecular and behavioral assays (e.g. DAP-Seq, live prey
assays). The proposed research is significant because it will provide a foundational
understanding of successful neural regeneration in response to injury, with a long-term
goal of identifying pathways or molecular mechanisms that could be leveraged to
improve human regenerative therapies.
项目摘要
人类的大脑和脊髓组织再生能力很差。无法再生
缺失或受损的细胞阻碍了神经退行性疾病后的存活和恢复
疾病、中风、创伤性或缺血性损伤或发育错误。与人类不同,
其他动物可以有效地修复中枢神经系统内的严重损伤或损害,
神经系统自由生活的淡水扁虫称为真涡虫,
非凡的再生能力,包括完美的再生和替换
所有的大脑和神经组织在组织损失或损伤后,
现有的组织和使用成人多能干细胞来取代不同的细胞类型,
包括几十种神经元。Planarians创造神经元在适当的比例
然后将神经元重新排列并连接到目标以恢复功能。长期
目的是发现强大的神经再生的分子和细胞基础,
真涡虫为实现这一目标,第一个具体目标是确定和描述
多能干细胞再生神经发生的重要因素,
首先是多巴胺能神经元的再生。四个转录因子编码基因
对于多巴胺能神经元亚型再生和维持重要的是,
已经被发现了。以下具体目标将提供重要信息
关于环境因素如何通过多能干细胞促进大脑再生,
vivo.第二个具体目的是检验神经发生被上调的假设
通过创伤诱导的信号机制。第三
一个特别的目的是检验这一假说,即涡虫神经发生是由极性驱动的
提示,以便在适当的位置创建正确类型的新神经元。的
本申请中提出的工作在概念上是创新的,因为使用了
高度再生模式生物,以探索再生神经发生,因为
开发新的分子和行为分析(例如DAP-Seq,活猎物
测定)。这项研究具有重要意义,因为它将提供一个基础
理解成功的神经再生对损伤的反应,长期
目标是确定可以利用的途径或分子机制,
改善人类再生疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Helen Roberts-Galbraith其他文献
Rachel Helen Roberts-Galbraith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Helen Roberts-Galbraith', 18)}}的其他基金
Mechanisms Driving Regenerative Neurogenesis in Planarians
涡虫再生神经发生的驱动机制
- 批准号:
10641949 - 财政年份:2022
- 资助金额:
$ 33.39万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 33.39万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 33.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 33.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 33.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




