A Functional Genomics Approach to Uncover the Mechanisms of Neutrophil Galvanotaxis.

揭示中性粒细胞趋电机制的功能基因组学方法。

基本信息

  • 批准号:
    10505961
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-16 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract During acute inflammation our immune cells orchestrate a complex, but coordinated mitigation response. Immune cells are especially good at navigating the complex extracellular environment through dynamic modulation of their actomyosin cytoskeletons, enabling a rapid and effective response throughout the body. The ability of cells to sense a variety of chemical and physical cues that direct their migratory paths is paramount to this action. Migration in response to bioelectric currents has long been demonstrated, leading to clinical applications in wound healing through exogenously applied electric potentials. While also implicated in our response to infections and in the metastatic spread of some cancers, our understanding of this directional cue, referred to as galvanotaxis or electrotaxis, remains limited. The experiments proposed in this application will develop the technology to perform large-scale assays of galvanotaxis and enable a comprehensive genome- wide strategy to identify the genes and cellular mechanisms involved in human neutrophil galvanotaxis. In Aim 1, I will fabricate a device that enables electric field-directed separation of the millions of cells required to perform genome-scale perturbation assays. In collaboration with Dr. Thomas Daniel, I will optimize the device and assay conditions to develop a robust protocol for studying galvanotaxis. Here I will gain training in computational and engineering tools for assay development. In Aim 2, I will apply a genome-wide CRISPRi knockdown screen of galvanotaxis, providing the first comprehensive strategy to identify the key genes involved in this mode of migration. Due to the technical challenges of such assays, several rounds of experiments will be performed to increase our confidence in identified gene candidates. In Aim 3, I will use computational and experimental approaches to gain new insights into the cellular mechanisms of galvanotaxis based on hypotheses generated from the screen work. In the course of this work, I will collaborate with experimentalist Dr. Sean Collins who is an expert in receptor-based signaling and signal transduction. He will provide invaluable guidance in these core components common to most modes of directed cell migration. Throughout Aim 2 and 3, I will also strengthen my experimental training in molecular biology and biochemical techniques through the expertise of the Theriot lab. Importantly, along with these research opportunities, the development award will provide me with additional career training that I currently need to start and manage a lab. It will also provide critical career training in laboratory leadership, teaching, grant writing and scientific communication. My mentor, Dr. Julie Theriot, will provide mentoring that will enable me to successfully transition to independence. This award will therefore provide the crucial training that will enable my longer-term goals of comprehensively understanding neutrophil motility and downstream effector functions.
项目摘要/摘要 在急性炎症期间,我们的免疫细胞协调复杂但协调的缓解反应。 免疫细胞尤其擅长在复杂的细胞外环境中通过动态的 他们的肌动球蛋白细胞骨架的调节,使快速和有效的反应遍及全身。这个 细胞感知指示其迁移路径的各种化学和物理线索的能力至关重要 这一行动。对生物电流的反应迁移早已被证明,导致临床 外加电势在伤口愈合中的应用。同时也牵涉到我们的 在对感染和某些癌症转移扩散的反应中,我们对这个定向信号的理解, 所谓的趋电性或趋电性,仍然有限。本申请中提出的实验将 开发进行大规模趋化电流检测的技术,并实现全面的基因组- 确定涉及人类中性粒细胞趋化的基因和细胞机制的广泛策略。 在目标1中,我将制造一种设备,能够实现电场定向分离所需的数百万个电池 进行基因组规模的扰动分析。与托马斯·丹尼尔博士合作,我将优化设备 以及测试条件,以制定研究趋化电流的可靠方案。在这里,我将接受培训 用于分析开发的计算和工程工具。在目标2中,我将应用全基因组CRISPRi 电趋化的击倒筛选,提供了第一个全面的策略来识别涉及的关键基因 在这种迁移模式下。由于这种化验的技术挑战,将进行几轮实验 以增加我们对已确定的候选基因的信心。在目标3中,我将使用计算和 基于假说对趋化电流的细胞机制获得新见解的实验方法 从屏幕作品中产生。在这项工作中,我将与实验家肖恩·柯林斯博士合作 世卫组织是基于受体的信号和信号转导方面的专家。他将提供宝贵的指导,在 这些核心组件是大多数定向细胞迁移模式所共有的。在目标2和目标3中,我还将 加强我在分子生物学和生化技术方面的实验培训 塞里奥特实验室。 重要的是,除了这些研究机会,发展奖将为我提供更多 我目前需要的职业培训,才能开始和管理一个实验室。它还将在以下领域提供关键的职业培训 实验室领导、教学、资助撰写和科学交流。我的导师朱莉·塞里奥特博士将 提供指导,使我能够成功地过渡到独立。因此,这一奖项将 提供关键的培训,使我能够实现全面了解中性粒细胞的长期目标 运动和下游效应器功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan M Belliveau其他文献

Nathan M Belliveau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan M Belliveau', 18)}}的其他基金

A Functional Genomics Approach to Uncover the Mechanisms of Neutrophil Galvanotaxis.
揭示中性粒细胞趋电机制的功能基因组学方法。
  • 批准号:
    10704752
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了