Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue
受伤组织中基底角质形成细胞迁移的机械调节
基本信息
- 批准号:10505700
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdhesionsAnimal ModelArchitectureBehaviorBiophysicsBullaCalcium SignalingCell AdhesionCellsChronicCicatrixComplexCytoskeletonDefectDiseaseEnsureEnvironmentEpidermolysis BullosaEpithelialEpithelial CellsEquilibriumExtracellular MatrixF-ActinFailureFocal AdhesionsFunctional disorderHomeostasisImageImaging TechniquesInjuryLeadLinkMechanicsMediatingMembraneMinorModelingMolecular GeneticsMovementNormal CellOpticsPathologyPatientsPhasePhenotypePiezo 1 ion channelProcessRegulationRegulatory PathwayResearchRoleSignal TransductionSiteStretchingSwellingSyndromeTestingTherapeuticTimeTissuesTrainingTranslatingTrauma patientUniversitiesWisconsinZebrafishcell behaviorchronic woundepithelial injuryepithelial woundexperimental studyfluorescence lifetime imaginghealingin vivoin vivo imaginginsightintravital imagingkeratinocyteknock-downmechanical forcemechanical signalmechanotransductionmigrationnon-healing woundsnovelpreventrepairedresponseresponse to injuryrestorationsecond harmonic generation imagingskin disordersuccesstoolwoundwound closurewound healing
项目摘要
Project Summary
Epithelial homeostasis is maintained by the balance of mechanical forces acting upon cells across the tissue-
scale. Injury disrupts this mechanical balance and it is unclear how changing homeostatic mechanical signals
impacts cell behavior needed for wound repair. Failure to efficiently repair can lead to fibrotic scarring, chronic
non-healing wounds, and contribute to pathology. Epithelial wound repair relies on the migration of basal
keratinocytes to the site of damage. While it is known that basal keratinocytes are sensitive to mechanical forces,
we lack an understanding of how epithelial injury alters tissue mechanics in vivo and how these wound-induced
biophysical changes subsequently coordinate basal keratinocyte behavior needed for wound repair. This study
aims to address these issues by using larval zebrafish, which are amenable to real-time, intravital imaging due
to their optical transparency. Preliminary live-imaging experiments show that epithelial injury causes rapid basal
keratinocyte migration to the wound site, which is needed for efficient repair. Basal keratinocyte migration is
dependent on mechanical signals, such as membrane tension due to cell swelling, and is associated with a
transient and localized disruption of epithelial tissue architecture at the wound edge. Basal keratinocyte migration
can be inhibited by blocking Arp2/3 complex activation or through Talin1 knockdown, suggesting a potential link
between mechanical signaling and F-actin or focal adhesion complex remodeling in vivo. Further, transiently
weakening cell adhesion to the extracellular matrix alters basal keratinocyte migration, causing poor wound
healing, and resulting in chronic disruption of epithelial architecture. This phenotype mimics pathology associated
with Kindler Syndrome, a skin disease in which patients show wound healing defects in response to injury. These
preliminary observations demonstrate that basal keratinocytes of larval zebrafish respond to mechanical signals
in epithelial tissue after injury by initiating a migratory response that is required for efficient wound healing. They
also suggest that defective basal keratinocyte migration may contribute to wound healing pathology. The
proposed study will investigate how tension sensing by the mechanotransducers Piezo1 and Talin1 regulate
wound-induced basal keratinocyte behavior by F-actin and focal adhesion remodeling, respectively. These
findings will subsequently be translated to investigate a zebrafish model of Kindler Syndrome to determine the
contribution of dysregulated basal keratinocyte behavior to wound healing pathophysiology. To ensure the
success of this project, a tailored training plan has been developed that takes advantage of the excellent research
environment at the University of Wisconsin – Madison. Dedicated training in the use of the zebrafish model
organism for wound healing studies and advanced in vivo imaging techniques for quantifying epithelial tissue
mechanics will aid in the completion of the stated aims. This training will facilitate a successful transition to
research independence.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Horn其他文献
Adam Horn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Horn', 18)}}的其他基金
Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue
受伤组织中基底角质形成细胞迁移的机械调节
- 批准号:
10705272 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant