The Role of CSF Dynamics in Infant Brain and Behavioral Development in Down Syndrome and Related Neurodevelopmental Disorders
脑脊液动力学在唐氏综合症和相关神经发育障碍婴儿大脑和行为发育中的作用
基本信息
- 批准号:10507609
- 负责人:
- 金额:$ 13.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abeta clearanceAddressAdultAge-MonthsAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAmyloid beta-ProteinAnimal ModelAxonBehavioralBehavioral SymptomsBiological MarkersBlood CirculationBrainBrain imagingCerebrospinal FluidCharacteristicsChildChild PsychiatryChildhoodClinicalClinical ResearchClinical assessmentsCognitive deficitsComplexDataDementiaDevelopmentDiffusionDiseaseDisease ProgressionDown SyndromeEarly InterventionEarly Onset Alzheimer DiseaseFoundationsFragile X SyndromeFunctional disorderFutureGeneral PopulationGoalsHealth SciencesHumanImageImpairmentInfantIntercellular FluidInterventionK-Series Research Career ProgramsLeadLifeLinkLongitudinal StudiesMagnetic Resonance ImagingManuscriptsMeasuresMeningeal lymphatic systemMentored Research Scientist Development AwardMentorsMentorshipMethodsModelingMorphologyMotorNeurodegenerative DisordersNeurodevelopmental DisorderNeurologyNeurosciencesOregonOutcomePathogenesisPathologyPathway interactionsPediatricsPhysicsPhysiologyProteinsProtocols documentationPsychiatryRadiology SpecialtyResearchResearch Project GrantsRiskRoleSamplingScanningSeveritiesSleep DisordersSpecificitySymptomsTestingTimeTrainingTreatment EfficacyUniversitiesWashingtonWorkautism spectrum disorderbrain healthcareercareer developmentcerebrospinal fluid flowcomputer sciencecritical perioddesignearly detection biomarkersglymphatic clearanceglymphatic dysfunctionglymphatic systemimaging modalityimaging studyimproved outcomeinfancylymphatic drainageneurodevelopmentneuroimagingneuroinflammationpre-clinicalprogramsrapid growthrelating to nervous systemsolutetargeted treatmentwhite matter
项目摘要
PROJECT ABSTRACT
CAREER GOAL: My long-term career goal is to lead an independent program of research that will leverage
advancements in neuroimaging, discoveries from translational animal models, and robust clinical assessments
to identify early pathology in brain development during critical periods in infancy when intervention can make the
greatest impact. Ultimately, I aim to improve outcomes in children with neurodevelopmental disorders (NDDs),
with a focus on Down Syndrome (DS), by contributing to work that will expand our understanding of early brain
development and inform personalized, targeted interventions and non-invasive markers for treatment efficacy.
RESEARCH PROJECT: Recent discoveries of the glymphatic system and meningeal lymphatic drainage have
highlighted that cerebrospinal fluid (CSF) is critically important for maintaining brain health by clearing
neuroinflammatory proteins (e.g., amyloid-beta, Aβ), whereas impaired CSF flow slows the clearance of Aβ and
has been implicated in the pathogenesis of Alzheimer’s disease. Approximately 50% of children with DS will
develop early-onset Alzheimer’s, occurring decades earlier than the general population. However, our
understanding of CSF dynamics has been limited to studies in aging adults, whereas clinical studies in infants
with NDDs (such as DS) are lacking. During infancy, the brain undergoes rapid growth and may be particularly
vulnerable to CSF abnormalities, but there is a critical gap in understanding CSF physiology during this sensitive
period and how it relates to the early brain development of NDDs. Given that children with DS are at a
substantially greater risk for Alzheimer’s, there is an urgent need to study CSF dynamics in infants with DS to
identify early, non-invasive biomarkers of disorder severity and progression and to guide personalized, targeted
treatments. We aim to utilize non-invasive MRI methods in infants to evaluate three measures of CSF physiology
(extra-axial CSF volume, perivascular space size, and CSF flow); their relationships to clinical manifestations of
DS; and compared to related NDDs (autism and Fragile X syndrome). Specific Aims: (1) Elucidate trajectories
of CSF dynamics in infants with DS and contrast with other NDDs to determine specificity; and (2) determine the
relationships between CSF dynamics and (2a) neural and (2b) clinical features of DS and related NDDs.
CAREER DEVELOPMENT: This K01 award will provide me with the necessary cross-disciplinary training in CSF
imaging, CSF pathophysiology, and early neural and behavioral features of DS and NDDs to launch my
independent career. Mentorship team includes clinical and preclinical experts in CSF abnormalities in NDDs,
glymphatic system, and CSF and brain imaging in infants: Co-mentors: Drs. Mark Shen (Dept. of Psychiatry and
Neuroscience, UNC) and Jeffrey lliff (Dept. of Neurology, University of Washington). Advisors: Drs. Joseph Piven
(Psychiatry, UNC), Robert McKinstry (Radiology, Washington University), Juan Piantino (Pediatrics, Oregon
Health and Science University), and Dr. Martin Styner (Computer Science, UNC).
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dea Garic其他文献
Dea Garic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 13.56万 - 项目类别:
Research Grant














{{item.name}}会员




