Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
基本信息
- 批准号:10507610
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseATPase DomainAccelerationAchievementActinsAutomobile DrivingAwardBenchmarkingBindingBinding SitesBiochemical ReactionBiologicalBiological ModelsCaringCharacteristicsChemistryCollaborationsCollectionComplexCrystallizationCrystallographyDevelopmentDiseaseElectron MicroscopyEngineeringEnsureEnzymatic BiochemistryEnzymesEventExhibitsFree EnergyFreezingGeometryHandHeat shock proteinsHybridsHydrolysisImpairmentIn VitroIndividualIonsJointsKnowledgeLeadLengthLifeLigand BindingMalignant NeoplasmsMechanicsMentorsMentorshipMetabolismMethodsModelingModernizationNucleotidesOrganismPathway interactionsPersonsPhasePhysiologicalPreparationProcessProtonsQuantum MechanicsReactionReactive Oxygen SpeciesResearchRoentgen RaysSeriesSideSolidStructureSumSystemTemperatureTestingTimeTime StudyTransportationUniversitiesWaterWorkactivation-induced cytidine deaminasebasechemical reactionelectron diffractionenzyme activityenzyme substrateexperimental studyin vivoinnovationinsightinstrumentmolecular mechanicsmutantnoveloperationprogramsquantumreceptorrestraintskillstime intervaltool
项目摘要
Project Summary
Enzymes are proteins that aid in the acceleration of metabolism or the chemical reactions in all living organisms.
By synthesizing certain molecules and degrading others, enzymes can catalyze a range of biochemical reactions
both in vivo and in vitro. When in collaboration with transporters and receptors, enzymes regulate almost all
physiological functions in the body. Therefore, it is important to thoroughly understand ex- and in vivo enzyme
activities.
Among the many methods of studying enzyme activities, time-resolved macromolecular crystallography (TRX)
has the advantage of investigating enzymatic reaction details on the fly. However, TRX theoretically can only
capture the states where the enzymes are at local energetic saddle points. On the other hand, modern hybrid
quantum mechanics/molecular mechanics (QM/MM) enables studying enzymatic reactions where new
molecules are formed or destroyed. However, without the support from solid biological structures or if the
transformation between reactant and product states is distinctively different, QM/MM cannot reach the authentic
answer.
This proposal aims to establish a new TRX- and QM/MM-based strategy to investigate enzymatic activities by
joining the strength of those two territories. Notably, a recently elucidated allosteric controlling mechanism in 70-
kDa heat shock proteins (Hsp70s) leads to an unparalleled opportunity of building a model system as a
benchmark for developing the proposed TRX-QM/MM strategy. Specifically, in Aim 1, a groundbreaking
discovery of oxygen radicals driving ATP hydrolysis will be examined by TRX experiments on the ATPase domain
of bacterial Hsp70 DnaK. In Aim 2, I will use QM/MM to identify and verify the oxygen radical species, and
depict the free energy landscape of the hydrolysis event in full scale. In Aim 3, I will use DnaK and actin to
benchmark the development of three components that will significantly enhance the scope of the TRX-QM/MM
method, including an automated freezing-and-quenching instrument, a new electron diffraction method for
chasing proton transportation, and a new crystallographic refinement program that can handle open-shell
systems.
During the K99 phase (Aim 1 and 2), I will be mentored by Dr. Wayne Hendrickson, a leader in macromolecular
crystallography, and Dr. Arieh Warshel, a leader in computational enzymology. This work will reveal a novel
mechanism of ATP hydrolysis by Hsp70 in the short term. Still, most importantly, it will establish an unparalleled
TRX-QM/MM method for broad enzymatic studies in the longer term.
项目摘要
酶是帮助加速新陈代谢或所有生物体中的化学反应的蛋白质。
通过合成某些分子和降解其他分子,酶可以催化一系列生化反应
无论是在体内还是体外。当与转运蛋白和受体合作时,酶调节几乎所有
身体的生理功能。因此,深入了解体外和体内酶是非常重要的。
活动
在研究酶活性的许多方法中,时间分辨大分子晶体学(TRX)
具有在飞行中研究酶促反应细节的优点。然而,TRX理论上只能
捕获酶在局部能量鞍点的状态。另一方面,现代混合动力汽车
量子力学/分子力学(QM/MM)使研究酶反应,其中新的
分子形成或被破坏。然而,如果没有固体生物结构的支持,
反应物和产物状态之间的转化是明显不同的,QM/MM不能达到真实的
答案
该提案旨在建立一种新的基于TRX和QM/MM的策略,通过以下方式研究酶活性:
将这两个地区的力量结合起来。值得注意的是,最近阐明的变构控制机制,在70-
kDa的热休克蛋白(Hsp 70)导致了一个无与伦比的机会,建立一个模型系统,
制定拟议TRX-QM/MM战略的基准。具体而言,在目标1中,
氧自由基驱动ATP水解的发现将通过ATP酶域上的TRX实验来检验
细菌Hsp 70 DnaK。在目标2中,我将使用QM/MM来识别和验证氧自由基物种,
描绘了水解事件的自由能全景。在目标3中,我将使用DnaK和肌动蛋白来
对三个组件的开发进行基准测试,这三个组件将显著增强TRX-QM/MM的范围
方法,包括一个自动冷冻和淬火仪器,一个新的电子衍射方法,
追逐质子运输,以及一个新的晶体学精炼程序,可以处理开壳层
系统.
在K99阶段(目标1和2),我将接受大分子领域的领导者韦恩亨德里克森博士的指导。
晶体学和Arieh Warshel博士,计算酶学的领导者。这部作品将揭示一部小说
Hsp 70在短期内水解ATP的机制。最重要的是,它将建立一个无与伦比的
TRX-QM/MM方法用于长期广泛的酶研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Wang其他文献
The zinc finger protein Zfr1p is localized specifically to conjugation junction and required for sexual development in Tetrahymena trermophila.
锌指蛋白 Zfr1p 特异性定位于接合点,是嗜震四膜虫性发育所必需的。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.7
- 作者:
Jing Xu;Huaru Tian;AIhua Liang;Wei Wang - 通讯作者:
Wei Wang
Well-posendess of Hydrodynamics on the moving surface
运动表面流体动力学的充分把握
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
Wei Wang;Pingwen Zhang;Zhifei Zhang - 通讯作者:
Zhifei Zhang
Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Wang', 18)}}的其他基金
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10680611 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10132232 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10372075 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Designing neutralization antibodies against Sars-Cov-2
设计针对 Sars-Cov-2 的中和抗体
- 批准号:
10173204 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10583462 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
9917215 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
- 批准号:
9898420 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
- 批准号:
9333639 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




