Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
基本信息
- 批准号:9333639
- 负责人:
- 金额:$ 52.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-03 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmino Acid SequenceBindingBinding ProteinsBinding SitesCancer PatientCell LineCellsChIP-seqChromatinCommunitiesComputing MethodologiesCritical PathwaysDNA MethylationDNA-Binding ProteinsDataDiseaseDistalElementsEnhancersGene ExpressionGene TargetingGenesGeneticGenetic AnnotationGenetic VariationGenomeHuman GenomeIndividualIntercistronic RegionLinkMalignant NeoplasmsMapsMethodsPatientsPerformancePhenotypeRegulationResearchResolutionResourcesRoleSamplingSampling StudiesScanningSignal PathwaySpecificitySuggestionThe Cancer Genome AtlasTissuesUntranslated RNAcell typechromatin proteincomputer frameworkdifferential expressionepigenomeepigenomicsexperimental studygenetic analysisgenetic associationgenome wide association studyhistone modificationimprovedinnovationnew therapeutic targetnovelpersonalized medicinepromotertooltranscription factortranscriptome sequencing
项目摘要
Project Summary:
The large majority of genetic variations (GVs) occur in non-coding regions particularly in intergenic regions.
Understanding the functions of the GVs and revealing their regulatory impact on gene expression remain a
great challenge because it is not trivial to link GVs to their target genes and consider collaborative effect of
individual GVs. The availability of large amount of the ENCODE and Roadmap Epigenomics Project data
provides an unprecedented opportunity to tackle these challenges. We will develop new computational
methods to predict long-range promoter-enhancer interactions from epigenomic data. These predicted
promoter-enhancer interactions will be integrated with the other ENCODE and Roadmap Epigenomics Project
data including histone modification, ChIP-seq of DNA binding proteins, RNA-seq and open chromatin data to
construct genetic networks that represent cell-type specific regulatory interactions. These networks will be
used to annotate the GVs identified in patient samples to reveal disease-related GVs. Once completed, the
proposed study will provide a suite of new computational methods for integrative analysis of the
ENCODE/Epigenome Roadmap data and establish a resource of the digested ENCODE/Roadmap
Epigenomics Project data. The proposed computational framework is general and can be easily applied to
other public data.
项目总结:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Wang其他文献
The zinc finger protein Zfr1p is localized specifically to conjugation junction and required for sexual development in Tetrahymena trermophila.
锌指蛋白 Zfr1p 特异性定位于接合点,是嗜震四膜虫性发育所必需的。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.7
- 作者:
Jing Xu;Huaru Tian;AIhua Liang;Wei Wang - 通讯作者:
Wei Wang
Well-posendess of Hydrodynamics on the moving surface
运动表面流体动力学的充分把握
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
Wei Wang;Pingwen Zhang;Zhifei Zhang - 通讯作者:
Zhifei Zhang
Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Wang', 18)}}的其他基金
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10507610 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10680611 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10132232 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10372075 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Designing neutralization antibodies against Sars-Cov-2
设计针对 Sars-Cov-2 的中和抗体
- 批准号:
10173204 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10583462 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
9917215 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
- 批准号:
9898420 - 财政年份:2017
- 资助金额:
$ 52.04万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 52.04万 - 项目类别:
Research Grant














{{item.name}}会员




