Secondary analysis of resting state MEG data using the Human Neocortical Neurosolver software tool for cellular and circuit-level interpretation
使用 Human Neocortical Neurosolver 软件工具对静息态 MEG 数据进行二次分析,以进行细胞和电路级解释
基本信息
- 批准号:10505661
- 负责人:
- 金额:$ 117.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdultAgeAgingAreaBRAIN initiativeBehavioralBeta RhythmBiological MarkersBiophysicsBrainBrain imagingCellsCharacteristicsCommunitiesDataData SetDevelopmentDiagnosticDiagnostic ProcedureElectroencephalographyEventFollow-Up StudiesFoundationsGenderGoalsHumanIndividualInformation TheoryLinkLongevityMagnetoencephalographyMapsMeasuresMethodsMotorMusNeurosciencesOutputProbabilityReproducibilityResearchRestSensorimotor functionsShapesSignal TransductionSoftware DesignSoftware ToolsTestingTimeTranslationsValidationVariantage groupbrain abnormalitiescell typeconnectomedata accessdeep neural networkexperiencegamma-Aminobutyric Acidimprovedinformation processinglarge scale datametermodels and simulationneocorticalneural modelneurodevelopmentneuromechanismnovelnovel diagnosticsopen dataopen sourcerelating to nervous systemrepositoryresponsesecondary analysissimulationsource localizationtargeted treatmenttemporal measurementtheoriestooltreatment strategy
项目摘要
Project Summary
The neuroscience community is experiencing a revolution in its ability to share and analyze vast amounts of
human brain imaging data, with support from the BRAIN Initiative and other substantial data-sharing efforts. One
domain in which there has been significant open access progress is Magnetoencephalography (MEG), where
data is available from hundreds of subjects during resting states and various behavioral conditions. While MEG
(and EEG) provide biomarkers of healthy and abnormal brain dynamics with fine temporal resolution, these
macroscopic scale signals have lacked interpretability at the underlying cellular and circuit level. This difficulty
limits translation of M/EEG into mechanistic theories of information processing, or into new diagnostic methods
and treatments that target e.g., specific cell types. To address this need, with support from the BRAIN initiative,
we developed an open-source neural modeling software designed for circuit level interpretation of M/EEG data,
the Human Neocortical Neurosolver (HNN), which is now freely available (https://hnn.brown.edu). The utility of
this new tool can be best demonstrated by application to large-scale data, where theories on the neural
mechanisms underlying reproducible MEG signals, such as resting state oscillations, and changes in these
signals across subjects can be developed. We propose to re-analyze open-access MEG data with a focus on
identifying stereotypical time-domain waveforms during resting state oscillations and variability across subjects
(Aim 1), and to apply the HNN software tool to develop biophysically-constrained hypothesis on the underlying
cellular and circuit generators of these waveforms and their variability (Aim 2). The application here focusses on
quantifying and interpreting changes in sensorimotor resting state oscillations across developmental trajectories
in adults (18-88yrs). This example case will provide the foundation for the ultimate goal of this project, which is
to develop a framework in which the wealth of open-source M/EEG data can be harnessed to define stereotypical
waveform shapes in MEG/EEG signals and quantifiable shape differences across groups. These waveforms can
then be imported into HNN for biophysically constrained predictions on circuit mechanisms that generate
individual subject data and group differences. This framework has the potential to transform M/EEG from being
purely diagnostic to providing targeted treatment strategies to improve brain function.
项目摘要
神经科学界正在经历一场革命,其分享和分析海量
人脑成像数据,在大脑倡议和其他实质性数据共享努力的支持下。一
在开放获取方面取得重大进展的领域是脑磁图(MEG),其中
数百名受试者在休息状态和各种行为条件下的数据都可以获得。而梅格
(和EEG)提供了具有精细时间分辨率的健康和异常脑动力学的生物标记物,这些
宏观尺度的信号在潜在的细胞和电路层面上缺乏可解释性。这一困难
限制将M/EEG转化为信息处理的机械理论或新的诊断方法
以及针对例如特定细胞类型的治疗。为了满足这一需求,在大脑倡议的支持下,
我们开发了一个开源的神经建模软件,专为M/EEG数据的电路级解释而设计,
人类大脑皮质神经解算器(HNN),现已免费提供(https://hnn.brown.edu).的效用
这一新工具可以通过对大规模数据的应用得到最好的证明,在这些数据中,关于神经的理论
可再现脑磁图信号的潜在机制,如静息状态振荡以及这些信号的变化
可以开发出跨受试者的信号。我们建议重新分析开放获取的脑磁图数据,重点放在
在不同受试者的静息状态振荡和变异性期间识别典型的时间域波形
(目标1),并应用HNN软件工具来开发关于潜在的生物物理约束假说
这些波形的蜂窝和电路发生器及其变异性(目标2)。这里的应用程序侧重于
量化和解释发育轨迹中感觉运动静息状态振荡的变化
成人(18-88岁)。此示例案例将为此项目的最终目标提供基础,即
开发一个框架,在这个框架中,可以利用大量的开源M/EEG数据来定义刻板印象
脑磁图/脑电信号中的波形形状和跨组的可量化形状差异。这些波形可以
然后导入到HNN中,用于对产生的电路机制进行生物物理约束预测
个体受试者数据和群体差异。这一框架有可能将M/EEG从
纯粹的诊断,以提供针对性的治疗策略,以改善大脑功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE Ruggiano JONES其他文献
STEPHANIE Ruggiano JONES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE Ruggiano JONES', 18)}}的其他基金
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
CRCNS: US-Spain Research Proposal: Interpreting MEG Biomarkers of Alzheimer's Progression with Human Neocortical Neurosolver
CRCNS:美国-西班牙研究提案:用人类新皮质神经解算器解释阿尔茨海默病进展的 MEG 生物标志物
- 批准号:
10396139 - 财政年份:2021
- 资助金额:
$ 117.36万 - 项目类别:
CRCNS: US-Spain Research Proposal: Interpreting MEG Biomarkers of Alzheimer's Progression with Human Neocortical Neurosolver
CRCNS:美国-西班牙研究提案:用人类新皮质神经解算器解释阿尔茨海默病进展的 MEG 生物标志物
- 批准号:
10616791 - 财政年份:2021
- 资助金额:
$ 117.36万 - 项目类别:
CRCNS: US-Spain Research Proposal: Interpreting MEG Biomarkers of Alzheimer's Progression with Human Neocortical Neurosolver
CRCNS:美国-西班牙研究提案:用人类新皮质神经解算器解释阿尔茨海默病进展的 MEG 生物标志物
- 批准号:
10474580 - 财政年份:2021
- 资助金额:
$ 117.36万 - 项目类别:
Integrated brain network and cell-circuit models of slow network fluctuations
慢网络波动的集成脑网络和细胞电路模型
- 批准号:
10639547 - 财政年份:2017
- 资助金额:
$ 117.36万 - 项目类别:
Project 5 The causal role of neocortical beta events in human sensory perception
项目 5 新皮质β事件在人类感官知觉中的因果作用
- 批准号:
10246478 - 财政年份:2013
- 资助金额:
$ 117.36万 - 项目类别:
Neurodynamics of Attention: MEG, EEG, and Modeling
注意力的神经动力学:MEG、EEG 和建模
- 批准号:
7338374 - 财政年份:2005
- 资助金额:
$ 117.36万 - 项目类别:
Neurodynamics of Attention: MEG, EEG, and Modeling
注意力的神经动力学:MEG、EEG 和建模
- 批准号:
7196454 - 财政年份:2005
- 资助金额:
$ 117.36万 - 项目类别:
Neurodynamics of Attention: MEG, EEG, and Modeling
注意力的神经动力学:MEG、EEG 和建模
- 批准号:
7012319 - 财政年份:2005
- 资助金额:
$ 117.36万 - 项目类别:
Neurodynamics of Attention: MEG, EEG, and Modeling
注意力的神经动力学:MEG、EEG 和建模
- 批准号:
7558525 - 财政年份:2005
- 资助金额:
$ 117.36万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Research Grant