Investigating the microcircuit determinants of neural population activity through comparative analysis of latent dynamics across cortical areas in the mouse
通过比较分析小鼠皮质区域的潜在动态来研究神经群体活动的微电路决定因素
基本信息
- 批准号:10505552
- 负责人:
- 金额:$ 36.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBrainBrain regionCalciumCellsCharacteristicsClassificationComplexDataData SetDevelopmentDiseaseElectrocorticogramElectrophysiology (science)GoalsImageIndividualInterneuronsInvestigationLearningLinkMapsMeasurementMeasuresMental disordersMethodsModalityModelingMusNeuronsNeurosciencesOpticsParvalbuminsPatternPopulationPropertyResourcesRoleSomatostatinStatistical MethodsStructureSumTestingTheoretical modelTimeVariantWorkbasecell typecomparativedensityinhibitory neuroninsightreceptor expressionrelating to nervous systemsuccesstheoriestooltwo-photon
项目摘要
Project Summary
A key goal in neuroscience is determining how microcircuit structure predicts circuit function. An intriguing idea,
supported by some theoretical models, is that variation in microcircuit composition supports functional
specialization. This theory has received support from the observation of a correlation between gradients in circuit
properties (receptor expression densities; inhibitory cell types) and in measurements of average intrinsic
timescales of recorded activity across cortical areas. However, other theories show how observed hierarchies of
timescales can emerge in the absence of microcircuit variation, either in critically tuned random networks or in
feed-forward networks with each layer summing over correlated sets of inputs. Moreover, individual cells are
embedded in complex, interconnected networks, generating correlations on multiple timescales and broad
distributions of single-cell timescales even within a single region. Previous empirical investigations have relied
on quantifying timescales of activity using single-cell spike count correlations and by averaged readouts of
activity such as the electrocorticogram (ECoG), because until recently, massively parallel recordings of
populations of single neurons with cell-type information as well as the statistical methods to analyze collective
dynamics were not widely available.
We have developed an analytic framework based on dynamic latent variable models to quantify timescales and
states of cortical dynamics from spiking activity in local populations and from local measures of population activity
(the local field potential, LFP). We propose to apply these methods to a set of publicly accessible recordings of
cortical activity in the mouse to determine (1) the extent to which variation in specific features of the cortical
microcircuitry explains variation in cortical dynamics, (2) the role of specific cell types in determining collective
dynamics, and (3) the connection between activity models across recording modalities
This study is fundamentally about quantitatively mapping normal variation in function and determining the extent
to which that variation is predicted from the local circuit properties. Modeling this relationship accurately will have
a large impact on our ability to predict how neural dynamics arise from changes in microcircuit structure and
could be extended to understand disruption of activity dynamics arising from circuit changes linked to mental
health disorders. Independent of the relationship to microcircuit structure, success of this study will generate a
framework in which variability of cortical dynamics can be accurately and quantitatively mapped across
individuals or in the same individual over time, providing an invaluable tool for the studies of learning and
development.
项目摘要
神经科学的一个关键目标是确定微电路结构如何预测电路功能。一个有趣的想法,
一些理论模型支持的是,微电路组成的变化支持功能
专业化这一理论得到了电路中梯度之间相关性的观察结果的支持
特性(受体表达密度;抑制性细胞类型)和平均内在
记录皮层区域活动的时间尺度。然而,其他理论表明,
在没有微电路变化的情况下,时间尺度可以出现,无论是在临界调谐的随机网络中,
前馈网络,每层对相关的输入集合求和。此外,单个细胞
嵌入复杂的互联网络,在多个时间尺度上产生相关性,
甚至在单个区域内的单个细胞时间尺度的分布。以前的实证研究依赖于
使用单细胞峰电位计数相关性和平均读数来量化活动的时间尺度
活动,如皮层电图(ECoG),因为直到最近,大量平行记录的
具有细胞类型信息的单个神经元群体以及分析集体神经元的统计方法,
动力学并不广泛可用。
我们开发了一个基于动态潜变量模型的分析框架,以量化时间尺度,
从局部人群的尖峰活动和群体活动的局部测量中获得的皮质动力学状态
(the局部场电位(LFP)。我们建议将这些方法应用于一组公开访问的录音,
小鼠的皮质活动,以确定(1)皮质的特定特征的变化程度
微电路解释了皮质动力学的变化,(2)特定细胞类型在决定集体行为中的作用
动态,以及(3)跨记录模式的活动模型之间的连接
这项研究的基本内容是定量地绘制正常的功能变化,并确定其程度
根据局部电路特性预测该变化。准确地建模这种关系将有
对我们预测神经动力学如何从微电路结构的变化中产生的能力产生了很大的影响,
可以扩展到理解由与心理相关的电路变化引起的活动动力学中断
健康失调独立的关系,微电路结构,这项研究的成功将产生一个
在这个框架中,皮层动力学的变异性可以准确地和定量地映射到不同的神经元。
个人或在同一个人随着时间的推移,提供了一个宝贵的工具,学习和
发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrey Sederberg其他文献
Audrey Sederberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain-region-specific humanized cortical interneuron mice
脑区域特异性人源化皮质中间神经元小鼠
- 批准号:
10735991 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
Low-input profiling of brain-region and cell-type specific epigenomic dynamics to understand gene-environment interactions in opioid addiction
对大脑区域和细胞类型特异性表观基因组动力学进行低输入分析,以了解阿片类药物成瘾中的基因与环境的相互作用
- 批准号:
10605801 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
Risk of Alzheimer's Disease and Related Dementias from Perinatal Lead Exposure: Brain Region and Cell Type Effects
围产期铅暴露导致阿尔茨海默病和相关痴呆的风险:大脑区域和细胞类型的影响
- 批准号:
10369814 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Brain region-specific immune responses driving concussion-related injury
大脑区域特异性免疫反应导致脑震荡相关损伤
- 批准号:
MR/V032925/1 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Fellowship
Mechanisms and circuits underlying the role of the lateral septum brain region in learning and memory
外侧隔脑区在学习和记忆中作用的机制和回路
- 批准号:
RGPIN-2020-06717 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Discovery Grants Program - Individual
Spatial cognition in fish-Analysis with species, task and brain region-
鱼类的空间认知-物种、任务和大脑区域的分析-
- 批准号:
22K03215 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk of Alzheimer's Disease and Related Dementias from Perinatal Lead Exposure: Brain Region and Cell Type Effects
围产期铅暴露导致阿尔茨海默病和相关痴呆的风险:大脑区域和细胞类型的影响
- 批准号:
10570921 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Understanding of adverse effects of organic arsenicals on central nervous system by chemical structure-cell type-brain region-toxicity relationship analyses
通过化学结构-细胞类型-脑区-毒性关系分析了解有机砷对中枢神经系统的不良影响
- 批准号:
22K12394 - 财政年份:2022
- 资助金额:
$ 36.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining interrelationships between brain region-specific structural plasticity and sleep electrophysiology via the integration of sex and learning
通过性与学习的整合来定义大脑区域特定结构可塑性与睡眠电生理学之间的相互关系
- 批准号:
443661 - 财政年份:2021
- 资助金额:
$ 36.1万 - 项目类别:
Operating Grants
Astrocyte and neuron brain-region and compartment-specific proteome dynamics in aging and Alzheimer’s disease
衰老和阿尔茨海默病中的星形胶质细胞和神经元脑区域和区室特异性蛋白质组动力学
- 批准号:
10630238 - 财政年份:2021
- 资助金额:
$ 36.1万 - 项目类别: