Neural mechanisms of behavioral coordination in Hydra
水螅行为协调的神经机制
基本信息
- 批准号:10505359
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAdultAffectAnimal BehaviorAnimalsBeesBehaviorBehavioralBehavioral MechanismsBrainCalciumCellsCnidariaComplexComputer ModelsCouplingDataDevelopmentDrosophila genusEtiologyExhibitsFrequenciesFruitGrainHallucinogensHumanImageLightLinkLysergic Acid DiethylamideMachine LearningMammalsMeasuresModelingMolecularNervous system structureNeuronsNeurosciencesOperative Surgical ProceduresOpsinOpticsOrganismParentsPatternPeriodicityPharmaceutical PreparationsPharmacologyPlayReportingResearchResolutionRoleSystemTestingTrainingTransgenic OrganismsZebrafishbehavioral studycareerexperimental studyfootneural networkneuromechanismneuropsychiatric disorderneuropsychiatryoptogeneticspromoterrelating to nervous systemspatiotemporal
项目摘要
PROJECT SUMMARY
How do animals coordinate their many parts to generate coherent, adaptive behavior? Are there neural
mechanisms that coordinate whole animal neural activity thereby coordinating whole animal behavior?
Numerous low-resolution studies in mammals have revealed a highly conserved hierarchy of spontaneous brain-
wide oscillations spanning a wide range of frequencies in which slower, more global oscillations appear to
coordinate and constrain faster, more local oscillations via various cross-frequency coupling mechanisms.
However, whether and how slow global oscillations might coordinate whole brain activity and, thus, whole animal
behavior, remains obscure due to the difficulty of measuring, manipulating, and modeling whole mammalian
brains with high spatiotemporal resolution. Fortunately, spontaneous brain-wide oscillations have also been
found in zebrafish, bees, fruit flies, and even the cnidarian, Hydra vulgaris, indicating significant evolutionary
conservation of these oscillations, particularly the ultraslow (0.01-0.1 Hz) rhythms. Hydra possesses the simplest
known nervous system and allows simultaneous calcium imaging of its entire nervous system during behavior,
enabling observation of all rhythms in parallel with single cell resolution. In addition, Hydra exhibits robust
behaviors that have been categorized and quantified using machine learning, allowing precise correlation of
global neural activity with fine-grained behavior. Thus, here I propose to use this highly tractable system to test
the hypothesis that the spontaneous ultraslow network of Hydra—rhythmic potential 1 (RP1, 0.1-0.01 Hz)—
serves as an organizer and coordinator of global neural activity to generate unified, coherent behavior. I predict
that disruption of RP1 activity will result in disorganized global neural activity and uncoordinated behavior, as
preliminary data indicate. The studies proposed here will directly test the causal link between spontaneous
ultraslow oscillations and global neural activity and behavior. To elucidate the role of RP1 in Hydra, I will first
employ single neuron resolution whole nervous system calcium imaging and behavioral analysis to determine if
RP1 activity is predictive of both global neural activity and behavior and whether it regulates the other major
networks in the animal via cross-frequency coupling. Next, I will determine if development of distinct RP1
networks is correlated with development of distinct and uncoordinated global neural activity and behavior in
budding Hydra. I will then disrupt the RP1 network physically, optically, and pharmacologically to determine if its
disruption results in uncoordinated global neural activity and behavior. Together, this proposal will shed light on
a major unanswered question within neuroscience: the role of spontaneous neural activity, particularly ultraslow
oscillations, and whether they might serve to coordinate global neural activity and behavior. This project will also
provide me with the training I need to launch a successful independent research career.
项目概要
动物如何协调它们的许多部分以产生连贯的、适应性的行为?有没有神经
协调整个动物神经活动从而协调整个动物行为的机制?
对哺乳动物进行的大量低分辨率研究揭示了自发脑的高度保守的层次结构
跨越广泛频率范围的宽振荡,其中较慢、更全局的振荡似乎
通过各种跨频耦合机制协调和约束更快、更多的局部振荡。
然而,缓慢的全局振荡是否以及如何协调整个大脑的活动,从而协调整个动物的活动?
由于测量、操作和建模整个哺乳动物的困难,行为仍然模糊不清
具有高时空分辨率的大脑。幸运的是,自发的全脑振荡也已被证实。
在斑马鱼、蜜蜂、果蝇,甚至刺胞动物、九头蛇中都发现了这种物质,这表明它们具有重要的进化意义
这些振荡的守恒,特别是超慢(0.01-0.1 Hz)节律。九头蛇拥有最简单的
已知的神经系统,并允许在行为过程中同时对其整个神经系统进行钙成像,
能够与单细胞分辨率同时观察所有节律。此外,Hydra 表现出强大的
使用机器学习对行为进行分类和量化,从而可以精确关联
具有细粒度行为的全局神经活动。因此,在这里我建议使用这个高度易于处理的系统来测试
假设 Hydra 的自发超慢网络——节律电位 1(RP1,0.1-0.01 Hz)——
作为全局神经活动的组织者和协调者,以产生统一、连贯的行为。我预测
RP1 活动的破坏将导致全局神经活动混乱和行为不协调,如
初步数据表明。这里提出的研究将直接测试自发性之间的因果关系
超慢振荡和全局神经活动和行为。为了阐明 RP1 在 Hydra 中的作用,我首先
采用单神经元分辨率全神经系统钙成像和行为分析来确定是否
RP1 活动可预测全局神经活动和行为,以及它是否调节其他主要神经活动和行为。
通过跨频耦合在动物中建立网络。接下来,我将确定是否开发不同的RP1
网络与不同且不协调的全局神经活动和行为的发展相关
正在萌芽的九头蛇。然后我将从物理上、光学上和药理学上破坏 RP1 网络,以确定它是否
干扰会导致全局神经活动和行为不协调。总之,该提案将阐明
神经科学中一个尚未解答的主要问题:自发神经活动,特别是超慢神经活动的作用
振荡,以及它们是否可以协调全局神经活动和行为。该项目还将
为我提供开展成功的独立研究生涯所需的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Hanson其他文献
Alison Hanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Hanson', 18)}}的其他基金
Neural Mechanisms of Behavioral Coordination in Hydra
水螅行为协调的神经机制
- 批准号:
10665072 - 财政年份:2022
- 资助金额:
$ 17.09万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant














{{item.name}}会员




