Rapid platelet dysfunction detection in whole blood samples using machine learning powered micro-clot imaging.

使用机器学习驱动的微凝块成像快速检测全血样本中的血小板功能障碍。

基本信息

  • 批准号:
    10505271
  • 负责人:
  • 金额:
    $ 40.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-19 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Abstract This project will optimize a point-of-care (POC) platelet force monitoring technology for clinical application in trauma care. The leading causes of death and disability after trauma are related to hemorrhage and traumatic brain injury with intracranial hemorrhage (ICH). Platelets are critical to hemostasis by inducing clot formation via adhesion, aggregation, and contraction at wounds. Platelets often become dysfunctional after trauma which worsens internal bleeding and ICH progression and increasing morbidity. POC platelet assays have not been incorporated in practice due to:1) lack of large cohort ED patient testing; 2) poor accuracy in transfusion prediction and 3) extended processing times. We have made an innovative POC technology to test platelet function by directly measuring platelet contractile forces on microfluidic force sensors. Advantages of our POC test vs. existing assays: 1) rapid, direct activation and measures of platelet functions and 2) innovative machine vision with deep potential for machine learning insight. However, this technology needs optimization and validation in a large major ED trauma cohort and remains untested after ICH. Our pilot data suggests platelet contractile forces are sensitive to a range of relevant activation pathways and mechanisms and force is significantly decreased in trauma patients requiring blood transfusion. Further, in prior clinical trials, platelet transfusion has been found to be harmful when used indiscriminately. Building on this unmet scientific need, we will determine if our POC technology is predictive of hemorrhagic complications in trauma patients, informing a personalized transfusion strategy. Our overarching hypothesis is our POC platelet force monitor technology is an efficient indicator of bleeding complications after trauma and ICH. Aim 1: Optimize the platelet force monitor optics to improve platelet force sensor performance. We hypothesize the addition of a second fluorescent imaging channel can improve our current platelet force sensor performance. Aim 2: Use machine learning (ML) image analysis to improve detection of platelet dysfunction and prediction of trauma outcomes. We hypothesize image-based ML models can improve test performance. We will compare the accuracy of direct platelet force measurements (Aim 1) vs. ML-enhancement measurements for detecting platelet dysfunction and predicting outcomes. Aim 3: Validate our platelet function algorithm for predicting blood transfusion needs, mortality, and the progression of traumatic ICH in a prospective cohort of severely-injured ED trauma patients. We hypothesize platelet force will be a powerful predictor of blood transfusion needs, mortality, and progression of ICH. In the ED we will apply our algorithm (both the original and optimized algorithm from Aim 1) to blood from trauma patients and compare the predicted transfusion requirements against actual transfusion (Aim-3a) and measure the association between measured platelet force and ICH progression (Aim-3b).
摘要 该项目将优化床旁(POC)血小板力监测技术,用于临床应用, 创伤护理创伤后死亡和残疾的主要原因与出血和创伤有关。 脑损伤伴颅内出血(ICH)。血小板通过诱导血栓形成而对止血至关重要 伤口处的粘附、聚集和收缩。创伤后,血小板通常会出现功能障碍, 颅内出血和ICH进展以及发病率增加。POC血小板测定尚未 由于以下原因纳入实践:1)缺乏大型队列艾德患者检测; 2)输血预测准确性差 以及3)延长的处理时间。我们开发了一种创新的POC技术,通过以下方式测试血小板功能: 在微流体力传感器上直接测量血小板收缩力。我们的POC测试与 现有的检测方法:1)快速、直接激活和测量血小板功能; 2)创新的机器视觉 在机器学习方面有很大的潜力然而,这项技术需要在一个 大型重大艾德创伤队列,并且在ICH后仍未进行测试。我们的试验数据表明血小板收缩力 对一系列相关激活途径和机制敏感, 需要输血的创伤患者。此外,在先前的临床试验中,已发现血小板输注 不加区别地使用是有害的。基于这一未满足的科学需求,我们将确定我们的POC 技术可预测创伤患者的出血并发症,为个性化输血提供信息 战略我们的总体假设是我们的POC血小板力监测技术是一个有效的指标, 创伤和ICH后出血并发症。目的1:优化血小板力监测器光学器件, 血小板力传感器性能。我们假设增加第二个荧光成像通道可以 改进了我们当前板力传感器性能。目标2:使用机器学习(ML)图像分析, 改善血小板功能障碍检测和创伤结局预测。我们假设基于图像的 ML模型可以提高测试性能。我们将比较直接血小板力测量的准确性 (Aim 1)与ML增强测量检测血小板功能障碍和预测结果。目标三: 血小板功能算法用于预测输血需求、死亡率和 创伤性脑出血进展的前瞻性队列研究--创伤性艾德患者我们 假设血小板作用力将是输血需求、死亡率和 ICH。在艾德中,我们将我们的算法(目标1中的原始算法和优化算法)应用于血液, 创伤患者,并将预测的输血需求与实际输血进行比较(Aim-3a), 测量测量的血小板力与ICH进展之间的关联(Aim-3b)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucas H Ting其他文献

Lucas H Ting的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucas H Ting', 18)}}的其他基金

Rapid platelet dysfunction detection in whole blood samples using machine learning powered micro-clot imaging.
使用机器学习驱动的微凝块成像快速检测全血样本中的血小板功能障碍。
  • 批准号:
    10621281
  • 财政年份:
    2021
  • 资助金额:
    $ 40.84万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.84万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了