Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics

融合机器学习和机械模型以改进对新兴流行病的预测和推理

基本信息

  • 批准号:
    10539401
  • 负责人:
  • 金额:
    $ 35.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY When an outbreak of an established or emerging infectious disease occurs we ask a standard set of questions that are critical to a lifesaving public health response: Where will future incidence occur? How many cases will there be? And where can we most effectively intervene? The proposed research is motivated by real world instances where answering these questions was critical to making practical public health decisions, and current methods came up short: from deciding if and where to build additional Ebola Treatment Units in the 2014-15 West African Ebola epidemic, to identifying priority districts where oral cholera vaccine should be used in the 2016-17 cholera outbreak in Yemen, to picking locations where sufficient cases might occur to selecting and prioritizing interventions to slow the spread of COVID-19 worldwide. Forecasts informing such decisions are typically generated either using an epidemic model that relies on knowledge of the disease transmission mechanism and epidemic theory or using a statistical model to project the expected number of cases based on the relationship between covariates and observed counts. However, both approaches are subject to limitations, particularly early in an epidemic when few cases are observed. This project is based on the overarching scientific premise that inferences that combine the strengths of mechanistic epidemic models and statistical covariate models will substantially outperform either approach alone in forecasting and making decisions to confront emerging infectious disease threats. Specifically, this project aims to (1) Develop a framework to forecast incidence in ongoing outbreaks that merges mechanistic and machine learning approaches; (2) Validate the framework using retrospective data and apply the framework to inform decision making in emerging epidemics; (3) Integrate this inferential forecasting framework into causal decision theory to optimize critical actions in the public health response to emerging epidemics; and (4) Develop accessible and extensible tools for forecasting and decision analysis in infectious disease epidemics. We will validate these approaches using rigorous simulation studies and by applying the proposed approaches to retrospective data from important recent epidemics (e.g., Ebola, Cholera and COVID-19, as mentioned above). We will prospectively apply our approach to inform the response to emerging disease threats that occur during the project period, including the ongoing COVID-19 pandemic. To ensure that the tools developed are useful, efficient, and user friendly, we will work with international humanitarian organizations responding to epidemics. Successful completion of these aims will provide a flexible and validated framework for forecasting and decision making during ongoing epidemics, while allowing for innovation in mechanistic and statistical approaches. In doing so it will provide tools to optimize responses and reduce morbidity and mortality during public health crises.
项目摘要 当一种既有或新出现的传染病爆发时,我们会问一系列标准问题, 对拯救生命的公共卫生反应至关重要:未来的发病率将发生在哪里?有多少案件 有吗?我们在哪里可以最有效地干预?本研究的动机是基于真实的世界 回答这些问题对于做出实际的公共卫生决策至关重要, 从决定2014-15年是否以及在哪里建立更多的埃博拉治疗单位, 西非埃博拉疫情,以确定应在西非地区使用口服霍乱疫苗的优先地区, 2016-17年也门霍乱疫情,选择可能发生足够病例的地点, 优先采取干预措施,减缓COVID-19在全球的传播。这些决定所依据的预测是 通常使用依赖于疾病传播知识的流行病模型生成 机制和流行病理论或使用统计模型来预测基于 协变量与观察到的计数之间的关系。然而,这两种方法都受到限制, 特别是在流行病的早期,那时观察到的病例很少。这个项目是基于总体 科学前提是,结合联合收割机的优势,机械流行病模型和统计 协变量模型在预测和决策方面将大大优于单独的任何一种方法, 应对新出现的传染病威胁。具体而言,本项目旨在(1)制定一个框架, 预测正在发生的疾病爆发的发病率,融合了机械和机器学习方法; (2)使用回顾性数据验证框架,并应用该框架为决策提供信息 在新出现的流行病中;(3)将这种推理预测框架融入因果决策理论 优化公共卫生应对新出现的流行病的关键行动;以及(4)制定 用于传染病流行预测和决策分析的可访问和可扩展工具。 我们将通过严格的模拟研究和应用所提出的方法来验证这些方法 到最近重要流行病的回顾性数据(例如,埃博拉,霍乱和COVID-19,如上所述 以上)。我们将前瞻性地应用我们的方法,为应对新出现的疾病威胁提供信息, 在项目期间发生的任何事件,包括正在进行的COVID-19大流行。确保开发的工具 是有用的,高效的,用户友好的,我们将与国际人道主义组织合作, 流行病成功地完成这些目标将为预测提供一个灵活和有效的框架 在流行病持续期间进行决策,同时允许在机械和统计方面进行创新 接近。在这样做的过程中,它将提供各种工具,以优化应对措施,并减少发病率和死亡率, 公共卫生危机。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessie Edwards其他文献

Jessie Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessie Edwards', 18)}}的其他基金

Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
  • 批准号:
    10709474
  • 财政年份:
    2021
  • 资助金额:
    $ 35.78万
  • 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
  • 批准号:
    10334519
  • 财政年份:
    2021
  • 资助金额:
    $ 35.78万
  • 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
  • 批准号:
    9270331
  • 财政年份:
    2016
  • 资助金额:
    $ 35.78万
  • 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
  • 批准号:
    10062470
  • 财政年份:
    2016
  • 资助金额:
    $ 35.78万
  • 项目类别:

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 35.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了