Computational Investigations of the Mechanisms Behind Microtubule Catastrophe
微管灾难背后机制的计算研究
基本信息
- 批准号:10515664
- 负责人:
- 金额:$ 3.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectBehaviorBindingBinding SitesCatalysisCell divisionCollaborationsCommunitiesComputational TechniqueCouplingCryoelectron MicroscopyCytoskeletonDataDevelopmentDrug TargetingEukaryotic CellFeedbackFree EnergyFutureGeometryGrainGuanosine DiphosphateGuanosine TriphosphateHeadHybridsHydrolysisIntracellular TransportInvestigationKnowledgeLeadLondonMapsMethodologyMethodsMicrotubule-Associated ProteinsMicrotubulesMitosisMitotic spindleModelingMolecularMolecular ConformationMutagenesisNaturePaclitaxelPathway interactionsPharmaceutical PreparationsPoisonPolymersProcessPropertyReactionRecombinantsResearch PersonnelResolutionRiceRoleRouteSamplingSeriesSiteStimulusStressStructureSurfaceTailTechniquesTestingTexasTherapeuticTubeTubulinUncertaintyUniversitiesVinblastineWorkalpha Tubulinbeta Tubulincell motilitychemotherapeutic agentcomputing resourcesdesignexperienceexperimental studyinorganic phosphatemicroscopic imagingmolecular mechanicsmutantnovelpolymerizationquantumreaction rateresponsesimulationtargeted treatmenttheories
项目摘要
PROJECT SUMMARY
Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and facilitate a plethora of
diverse functions including intracellular transport, cellular motility, and, cell division. During mitosis, MTs
aggregate to form the mitotic spindle, making them a potent drug target for many successful chemotherapeutic
agents, including paclitaxel and vinblastine, known as spindle poisons. MT-targeting drugs operate by interfering
with dynamic instability (DI): the ability of MTs to rapidly switch from polymerizing to depolymerizing (referred to
as catastrophe) and vice-versa. Paclitaxel operates by decreasing catastrophe rate while vinblastine encourages
catastrophe and inhibits polymerization. A full understanding of MT catastrophe will greatly aid in the design of
spindle poisons with fewer off-target effects, as well as greatly advance general understanding of DI.
Each MT is composed of αβ-tubulin heterodimers, stacked head-to-tail in protofilaments (PFs) which are aligned
laterally to form a hollow tube. Both α- and β-tubulin bind guanosine triphosphate (GTP) and hydrolysis of GTP
to GDP (guanosine diphosphate) at the β-tubulin binding site is hypothesized to induce stress on the MT lattice.
This stress gradually builds until the subunits at the MT end undergo GTP hydrolysis, at which point PFs begin
to peel apart and catastrophe has occurred. Lag between GTP hydrolysis and polymerization creates a construct
referred to as the GTP cap: a group of subunits at the MT end that have yet to hydrolyze GTP, release the
product inorganic phosphate (Pi), or undergo a structural transition. Recent studies have caused doubt in the
field on the nature of this transition and an atomistic understanding of the underlying mechanisms will lead to a
full understanding of catastrophe. I propose to computationally resolve three key aspects of catastrophe: the
mechanism of GTP hydrolysis, the release of Pi, and the structural coupling between PFs leading to catastrophe.
First, I will use enhanced sampling methodology to uncover the enzymatic mechanism of GTP hydrolysis, with
emphasis placed on potential catalytic residues belonging to α-tubulin, which sits atop β-tubulin upon
polymerization to form the active site. Subsequently, I will develop novel computational techniques to determine
the pathway of Pi release post-hydrolysis and examine the potential for structural change upon release. Lastly, I
will develop a coarse-grained (CG) model of a full MT, using rates determined from the previous studies, able to
undergo catastrophe to examine how hydrolysis and Pi release in neighboring subunits affects the potential for
these reactions to occur in a particular subunit. This will give an unprecedentedly detailed view of the loss of the
GTP cap and the steps leading to catastrophe. Additionally, I will collaborate with two leading experimentalists
in the MT community to develop mutants that specifically test my hypotheses and to obtain lattice parameters of
MTs doped with spindle poisons. This will allow me to integrate the effects of drugs into the CG model and
examine how their effects propagate along an MT. These results and the developed models will greatly advance
the understanding of DI and hopefully lead to the development of gentler MT-targeting therapies in the future.
项目概要
微管 (MT) 构成真核细胞骨架的最大组成部分,并促进大量的
多种功能,包括细胞内运输、细胞运动和细胞分裂。有丝分裂期间,MT
聚集形成有丝分裂纺锤体,使它们成为许多成功化疗的有效药物靶点
药物,包括紫杉醇和长春花碱,被称为纺锤体毒物。 MT靶向药物通过干扰发挥作用
具有动态不稳定性(DI):MT从聚合快速切换到解聚的能力(称为
作为灾难),反之亦然。紫杉醇通过降低灾难发生率来发挥作用,而长春碱则鼓励
灾难并抑制聚合。对 MT 灾难的充分理解将极大地有助于设计
纺锤体毒物具有较少的脱靶效应,并大大增进了对 DI 的一般理解。
每个 MT 由 αβ-微管蛋白异二聚体组成,头尾相连地堆叠在排列整齐的原丝 (PF) 中
横向形成空心管。 α-和 β-微管蛋白均结合三磷酸鸟苷 (GTP) 并水解 GTP
假设 β-微管蛋白结合位点上的 GDP(二磷酸鸟苷)会在 MT 晶格上产生应力。
这种压力逐渐增加,直到 MT 末端的亚基发生 GTP 水解,此时 PF 开始
剥落,灾难就发生了。 GTP 水解和聚合之间的滞后创建了一个构建体
称为GTP帽:MT末端的一组亚基,尚未水解GTP,释放
产品无机磷酸盐(Pi),或经历结构转变。最近的研究引起了人们的质疑
关于这种转变本质的领域以及对基本机制的原子理解将导致
对灾难的充分认识。我建议通过计算解决灾难的三个关键方面:
GTP 水解、Pi 释放以及 PF 之间的结构耦合导致灾难的机制。
首先,我将使用增强采样方法来揭示 GTP 水解的酶促机制,其中
重点放在属于 α-微管蛋白的潜在催化残基,它位于 β-微管蛋白之上
聚合形成活性位点。随后,我将开发新的计算技术来确定
水解后 Pi 释放的途径,并检查释放后结构变化的可能性。最后,我
将使用先前研究确定的速率开发完整 MT 的粗粒度 (CG) 模型,能够
经历灾难来检查相邻亚基中的水解和 Pi 释放如何影响潜在的
这些反应发生在特定的亚基中。这将为我们提供前所未有的关于损失的详细视图。
GTP 上限和导致灾难的步骤。此外,我将与两位领先的实验学家合作
在 MT 社区开发突变体来专门测试我的假设并获得晶格参数
MTs 掺杂纺锤体毒物。这将使我能够将药物的作用整合到 CG 模型中
检查它们的影响如何沿着 MT 传播。这些结果和开发的模型将极大地推进
对 DI 的理解并有望在未来引领更温和的 MT 靶向疗法的发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unveiling the catalytic mechanism of GTP hydrolysis in microtubules.
- DOI:10.1073/pnas.2305899120
- 发表时间:2023-07-04
- 期刊:
- 影响因子:11.1
- 作者:Beckett, Daniel;Voth, Gregory A.
- 通讯作者:Voth, Gregory A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Beckett其他文献
Daniel Beckett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Beckett', 18)}}的其他基金
Computational Investigations of the Mechanisms Behind Microtubule Catastrophe
微管灾难背后机制的计算研究
- 批准号:
10330371 - 财政年份:2021
- 资助金额:
$ 3.59万 - 项目类别:
相似海外基金
NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
- 批准号:
2208822 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Fellowship Award
THE AFFECT OF REGINAOL CHATACTERISTIC ON TRAVEL BEHAVIOR AND HELTH FROM DRIVING CESSATON
雷吉诺尔特征对驾驶塞萨顿旅行行为和健康的影响
- 批准号:
20K04741 - 财政年份:2020
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does financial education affect financial behavior?
财商教育会影响财商行为吗?
- 批准号:
19K01769 - 财政年份:2019
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How the online shopping and flea market apps affect the consumer behavior and cross border electronic commerce?
网购和跳蚤市场应用程序如何影响消费者行为和跨境电子商务?
- 批准号:
18K01798 - 财政年份:2018
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
When free trade agreement meets competition----How does EU-Korea FTA affect Japanese firms' investment behavior
当自贸协定遇上竞争——欧盟-韩国自贸协定如何影响日本企业的投资行为
- 批准号:
18K12777 - 财政年份:2018
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of the relationship between the maternal mental health, and the development and behavior of children, and the psychosocial factors that affect them
检查母亲心理健康与儿童的发展和行为之间的关系以及影响他们的心理社会因素
- 批准号:
17K16375 - 财政年份:2017
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 3.59万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 3.59万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 3.59万 - 项目类别:
Do short term changes in atmospheric pressure affect the calling behavior of male crickets
大气压力的短期变化会影响雄性蟋蟀的叫声行为吗
- 批准号:
467890-2014 - 财政年份:2014
- 资助金额:
$ 3.59万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




