Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
基本信息
- 批准号:10510107
- 负责人:
- 金额:$ 186.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsAnimalsAreaBrainCellsCognitionCognitiveCommunitiesComplexComputer softwareDataData SetDevelopmentDevicesDimensionsEnsureEsthesiaFutureGoalsHippocampus (Brain)JointsLocationMeasurableMeasurementMeasuresMemoryMethodsModelingModernizationMotorMotor outputNatureNeuronsNeurosciencesPatternPerceptionPlayPopulationPositioning AttributeProblem SolvingPropertyPsyche structureResearchResearch PersonnelRoleSensorySignal TransductionSoftware ToolsSorting - Cell MovementStimulusStructureSystemTestingTimeWorkcognitive processcomputing resourcesdeep learningdeep neural networkexperienceexperimental studyhigh dimensionalityimplementation toolinsightlarge datasetsneuronal circuitrynovelnovel strategiesparallel computerreceptive fieldrelating to nervous systemresponsesensory inputstatistical and machine learningtheoriestooluser-friendly
项目摘要
The brain is a massively interconnected network of specialized circuits. Understanding how these circuits support
sensation, perception, cognition, and action requires measuring activity patterns within and across regions, but
the measurements themselves do not produce insight into the structure or function of the underlying neuronal
system. Insight requires the applications of quantitative methods that relate neuronal activity patterns to
experimentally measurable variables, including things like present and past sensory inputs, current location, and
current or future motor outputs. The result is an “encoding” model relating measured variables to spiking activity.
Through a simple application of Bayes rule, this encoding model can be used to create a “decoding” model. In
decoding, the goal is to take a pattern of spiking activity, along with a previously developed encoding model, and
assess the sensory, cognitive or motor representation corresponding to the spiking. Encoding and decoding
algorithms are a fundamental part of modern systems neuroscience and play a critical role in helping us
understand the nature and dynamics of neuronal representations. These approaches provide a powerful way to
gain insight about neuronal populations, but several limitations of current algorithms blunt their efficacy. First,
while modern deep neural networks can be powerful for decoding, they have multiple shortcomings in the context
of scientific discovery. Second, advanced decoding algorithms tend to be too complex and computationally
intensive for most researchers to implement in the analyses of large-scale neural datasets. Moreover, robust,
easy to use software that would allow less sophisticated users to take advantage of these algorithms does not
exist. Third, the results of decoding are typically very sensitive to the total number of neurons recorded. Fourth,
while decoding a single variable (e.g. animal position, target value, etc.) is tractable, decoding multiple variables
simultaneously is beyond the capacities of current approaches. Fifth, neural response properties and the quality
of neural recording often changes through the course of an experiment. Existing decoding algorithms are either
static or require repeated re-estimation of the encoding model to maintain estimation accuracy. Finally, decoding
has traditionally focused on observable signals, such as the animal’s position, but recent work has focused on
unobserved cognitive processes, such as mental exploration. New methods are needed to determine when
decoding of cognitive processes is reliable. Solving these problems requires new approaches and new
parallelized software that make these approaches easy to use and efficient for the community. We have
developed clusterless decoding algorithms that make very efficient use of the available data, and here we will
further develop those algorithms and the software that implements them to meet all of the challenges described
above. The result will be a powerful set of tools that have the potential to drive new discoveries.
大脑是一个由专门电路组成的大规模互联网络。了解这些电路是如何支持的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Tzvi Eden其他文献
Uri Tzvi Eden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Tzvi Eden', 18)}}的其他基金
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
- 批准号:
10721722 - 财政年份:2023
- 资助金额:
$ 186.15万 - 项目类别:
Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
- 批准号:
10733629 - 财政年份:2023
- 资助金额:
$ 186.15万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
9789298 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
10002222 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Computational and Circuit Mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9613104 - 财政年份:2015
- 资助金额:
$ 186.15万 - 项目类别:
Computational and circuit mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9012535 - 财政年份:2015
- 资助金额:
$ 186.15万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8451467 - 财政年份:2011
- 资助金额:
$ 186.15万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8140975 - 财政年份:2011
- 资助金额:
$ 186.15万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 186.15万 - 项目类别:
Standard Grant














{{item.name}}会员




