Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
基本信息
- 批准号:10510107
- 负责人:
- 金额:$ 186.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsAnimalsAreaBrainCellsCognitionCognitiveCommunitiesComplexComputer softwareDataData SetDevelopmentDevicesDimensionsEnsureEsthesiaFutureGoalsHippocampus (Brain)JointsLocationMeasurableMeasurementMeasuresMemoryMethodsModelingModernizationMotorMotor outputNatureNeuronsNeurosciencesPatternPerceptionPlayPopulationPositioning AttributeProblem SolvingPropertyPsyche structureResearchResearch PersonnelRoleSensorySignal TransductionSoftware ToolsSorting - Cell MovementStimulusStructureSystemTestingTimeWorkcognitive processcomputing resourcesdeep learningdeep neural networkexperienceexperimental studyhigh dimensionalityimplementation toolinsightlarge datasetsneuronal circuitrynovelnovel strategiesparallel computerreceptive fieldrelating to nervous systemresponsesensory inputstatistical and machine learningtheoriestooluser-friendly
项目摘要
The brain is a massively interconnected network of specialized circuits. Understanding how these circuits support
sensation, perception, cognition, and action requires measuring activity patterns within and across regions, but
the measurements themselves do not produce insight into the structure or function of the underlying neuronal
system. Insight requires the applications of quantitative methods that relate neuronal activity patterns to
experimentally measurable variables, including things like present and past sensory inputs, current location, and
current or future motor outputs. The result is an “encoding” model relating measured variables to spiking activity.
Through a simple application of Bayes rule, this encoding model can be used to create a “decoding” model. In
decoding, the goal is to take a pattern of spiking activity, along with a previously developed encoding model, and
assess the sensory, cognitive or motor representation corresponding to the spiking. Encoding and decoding
algorithms are a fundamental part of modern systems neuroscience and play a critical role in helping us
understand the nature and dynamics of neuronal representations. These approaches provide a powerful way to
gain insight about neuronal populations, but several limitations of current algorithms blunt their efficacy. First,
while modern deep neural networks can be powerful for decoding, they have multiple shortcomings in the context
of scientific discovery. Second, advanced decoding algorithms tend to be too complex and computationally
intensive for most researchers to implement in the analyses of large-scale neural datasets. Moreover, robust,
easy to use software that would allow less sophisticated users to take advantage of these algorithms does not
exist. Third, the results of decoding are typically very sensitive to the total number of neurons recorded. Fourth,
while decoding a single variable (e.g. animal position, target value, etc.) is tractable, decoding multiple variables
simultaneously is beyond the capacities of current approaches. Fifth, neural response properties and the quality
of neural recording often changes through the course of an experiment. Existing decoding algorithms are either
static or require repeated re-estimation of the encoding model to maintain estimation accuracy. Finally, decoding
has traditionally focused on observable signals, such as the animal’s position, but recent work has focused on
unobserved cognitive processes, such as mental exploration. New methods are needed to determine when
decoding of cognitive processes is reliable. Solving these problems requires new approaches and new
parallelized software that make these approaches easy to use and efficient for the community. We have
developed clusterless decoding algorithms that make very efficient use of the available data, and here we will
further develop those algorithms and the software that implements them to meet all of the challenges described
above. The result will be a powerful set of tools that have the potential to drive new discoveries.
大脑是一个由专门电路组成的大规模互联网络。了解这些电路如何支持
感觉、知觉、认知和行动需要测量区域内和区域间的活动模式,
测量本身并不能深入了解神经元的结构或功能
系统洞察力需要应用定量方法,将神经元活动模式与
实验可测量的变量,包括现在和过去的感觉输入,当前位置,
当前或未来的电机输出。结果是一个“编码”模型,将测量的变量与尖峰活动联系起来。
通过简单的应用贝叶斯规则,这种编码模型可以用来创建一个“解码”模型。在
解码,目标是采取尖峰活动的模式,沿着先前开发的编码模型,以及
评估与尖峰对应的感觉、认知或运动表征。编码和解码
算法是现代系统神经科学的基础部分,在帮助我们
了解神经元表征的性质和动力学。这些方法提供了一种强有力的方法,
获得有关神经元群体的洞察力,但当前算法的几个局限性削弱了它们的功效。第一、
虽然现代深度神经网络在解码方面很强大,但它们在上下文中存在多个缺点。
科学发现。其次,高级解码算法往往过于复杂和计算量大
对于大多数研究人员来说,在分析大规模神经数据集时是密集的。此外,鲁棒,
一个易于使用的软件,将允许不太复杂的用户利用这些算法,
存在.第三,解码的结果通常对记录的神经元总数非常敏感。四、
当解码单个变量(例如动物位置、目标值等)时,是易于处理的,解码多个变量
这超出了当前方法的能力。第五,神经反应的性质和质量
在实验过程中,神经记录经常会发生变化。现有的解码算法是
静态的或需要编码模型的重复重新估计以保持估计精度。最后,解码
传统上专注于可观察到的信号,如动物的位置,但最近的工作集中在
未观察到的认知过程,如心理探索。需要新的方法来确定何时
认知过程的解码是可靠的。解决这些问题需要新的方法和
并行化的软件,使这些方法易于使用和有效的社区。我们有
开发了无簇解码算法,可以非常有效地利用可用数据,这里我们将
进一步开发这些算法和实现它们的软件,以应对上述所有挑战
以上其结果将是一套强大的工具,有可能推动新的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Tzvi Eden其他文献
Uri Tzvi Eden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Tzvi Eden', 18)}}的其他基金
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
- 批准号:
10721722 - 财政年份:2023
- 资助金额:
$ 186.15万 - 项目类别:
Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
- 批准号:
10733629 - 财政年份:2023
- 资助金额:
$ 186.15万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
9789298 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
10002222 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Computational and Circuit Mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9613104 - 财政年份:2015
- 资助金额:
$ 186.15万 - 项目类别:
Computational and circuit mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9012535 - 财政年份:2015
- 资助金额:
$ 186.15万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8451467 - 财政年份:2011
- 资助金额:
$ 186.15万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8140975 - 财政年份:2011
- 资助金额:
$ 186.15万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 186.15万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 186.15万 - 项目类别:
Standard Grant














{{item.name}}会员




