Real-time analysis of memories and decisions
实时分析记忆和决策
基本信息
- 批准号:8787330
- 负责人:
- 金额:$ 67.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseAnimalsBehavioralBrainBrain regionCellsCognitiveCommunitiesComplexDataDecision MakingDevelopmentDiseaseElementsEnvironmentEpilepsyEventFeedbackFutureGoalsHealthHippocampus (Brain)IndividualInterruptionLaboratoriesLearningLeftLifeLinkMemoryMental DepressionNeuronsNeurosciencesPatternPrefrontal CortexProcessRetrievalRoleSchizophreniaSiteStructureTechnologyTestingTimeWorkawakebasecognitive functionexperienceinformation processinginsightmemory processmemory retrievalneural circuitnew technologynovel strategiesopen sourcerelating to nervous systemresearch study
项目摘要
DESCRIPTION (provided by applicant): The abilities to learn, remember, evaluate and decide are central to who we are and how we structure our lives. These abilities, and indeed the vast majority of cognitive functions, are thought to depend on specific patterns of brain activity. Each
new experience is thought to drive a unique pattern of brain activity in the hippocampus, a brain region critical for storing memories for the events of daily life. Subsequent reactivation of this experience after learning is thought to drive a consolidation process that engrains the patterns in hippocampal and cortical circuits. Similarly, subsequent retrieval is thought to rely on the reinstatement of patterns similar to those present during the original experience. Current evidence points to the replay of sequences of hippocampal neurons during sharp-wave ripple events (SWRs) as a candidate mechanism for both memory consolidation and memory retrieval. To determine whether memory replay drives consolidation and retrieval for the associated memory representations, we will carry out directed manipulations that go beyond interrupting all SWRs to target replay events by their content. Our work will build on our expertise in real-time feedback and recent developments in cluster-less decoding that have allowed us to develop all of the technological elements required for real-time, content-based interruption of hippocampal replay events. This will allow us to assess the role of specific memory replay events in memory processes. Our Specific Aims are: 1) to develop an optimal adaptive statistical framework for real-time decoding and interruption of memory replay, 2) to test the hypothesis that hippocampal replay events drive memory consolidation for the replayed memories, and 3) to test the hypothesis that hippocampal replay events support rule learning and the internal exploration of specific future possibilities. Our real-time approach has the potential to create new causal links between the replay of specific patterns of activity and the ability to consolidation memories and to use past experience to guide future decisions.
描述(由申请人提供):学习、记忆、评估和决定的能力对我们是谁以及我们如何构建我们的生活至关重要。这些能力,甚至绝大多数认知功能,都被认为取决于大脑活动的特定模式。每个人
新的体验被认为推动了海马体中一种独特的大脑活动模式,海马体是存储日常生活事件记忆的关键大脑区域。学习后这种经验的随后重新激活被认为驱动了一个巩固过程,该过程在海马区和大脑皮层回路中植入了模式。同样,随后的提取被认为依赖于与原始体验中出现的模式相似的模式的恢复。目前的证据表明,在尖波涟漪事件(SWRs)期间,海马神经元序列的重播是记忆巩固和记忆提取的候选机制。为了确定内存重放是否会驱动相关内存表示的整合和检索,我们将执行定向操作,这些操作不仅仅是中断所有SWR,而是通过内容来确定重放事件的目标。我们的工作将建立在我们在实时反馈方面的专业知识和无簇解码方面的最新进展的基础上,这些进展使我们能够开发基于内容的实时中断海马体重放事件所需的所有技术元素。这将使我们能够评估特定的记忆重放事件在记忆过程中的作用。我们的具体目标是:1)为记忆重放的实时解码和中断建立一个最优的自适应统计框架;2)检验海马重放事件驱动重放记忆巩固的假设;3)检验海马重放事件支持规则学习和对未来特定可能性的内部探索的假设。我们的实时方法有可能在特定活动模式的重播与巩固记忆和使用过去经验指导未来决策的能力之间建立新的因果联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Tzvi Eden其他文献
Uri Tzvi Eden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Tzvi Eden', 18)}}的其他基金
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
- 批准号:
10721722 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
- 批准号:
10733629 - 财政年份:2023
- 资助金额:
$ 67.43万 - 项目类别:
Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
- 批准号:
10510107 - 财政年份:2022
- 资助金额:
$ 67.43万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
9789298 - 财政年份:2018
- 资助金额:
$ 67.43万 - 项目类别:
Measuring, Modeling, and Modulating Cross-Frequency Coupling
跨频耦合的测量、建模和调制
- 批准号:
10002222 - 财政年份:2018
- 资助金额:
$ 67.43万 - 项目类别:
Computational and Circuit Mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9613104 - 财政年份:2015
- 资助金额:
$ 67.43万 - 项目类别:
Computational and circuit mechanisms for information transmission in the brain
大脑信息传输的计算和电路机制
- 批准号:
9012535 - 财政年份:2015
- 资助金额:
$ 67.43万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8451467 - 财政年份:2011
- 资助金额:
$ 67.43万 - 项目类别:
Multiscale analysis and modeling of spatiotemporal dynamics in human epilepsy
人类癫痫时空动力学的多尺度分析和建模
- 批准号:
8140975 - 财政年份:2011
- 资助金额:
$ 67.43万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 67.43万 - 项目类别:
Research Grant














{{item.name}}会员




