Mechanisms of Sensing and Responding to Lysosomal Stress in Neurons
神经元溶酶体应激的感知和响应机制
基本信息
- 批准号:10509979
- 负责人:
- 金额:$ 43.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAlzheimer&aposs DiseaseAxonAxonal TransportBehaviorBiogenesisBiologyCalciumCellsCessation of lifeChloroquineDataDegradation PathwayDendritesDiseaseDistalDominant-Negative MutationDrug TargetingDrug usageEndosomesEquilibriumEstersExposure toFunding MechanismsFutureGenesHourImageImpairmentIncubatedIschemiaIschemic StrokeKnowledgeLeadLinkLipidsLongevityLysosomesMaintenanceMembraneMicrofluidic MicrochipsMolecularMonitorNeurodegenerative DisordersNeurogliaNeuronal DysfunctionNeuronsNiemann-Pick DiseasesOrganellesOrganismOxidative StressPathologicPathway interactionsPharmaceutical PreparationsPharmacologyPhosphotransferasesProtein BiosynthesisProteomeProtonsRegulationResearchRoleSelective Serotonin Reuptake InhibitorSignal TransductionStressStrokeSystemTestingTimeWorkextracellularfirst responderimprovedinsightlate endosomemonomermulticatalytic endopeptidase complexnervous system disorderneurological pathologyneuronal cell bodyneurotoxicnovelpreventprotein degradationproteostasisprotonationrecruitrepairedresponsesensorstressortau Proteinstooltranslational approachunpublished works
项目摘要
Protein homeostasis in all cells is maintained by regulating the balance between protein synthesis and protein
degradation. Since neurons are extraordinarily large and extremely long-lived, maintenance of the neuronal
proteome is unusually challenging. Disruption of normal protein turnover can lead to accumulation of toxic
aggregates, neuronal dysfunction, and death. Not surprisingly then, genes linked to degradative pathways are
frequently linked to diseases of the nervous system. There is a big knowledge gap for how neurons monitor and
handle proteostatic stress, and how axons and dendrites might have adapted different mechanisms to do this
effectively. One cause of proteostatic stress is lysosomal damage which occurs much more frequently than
previously realized. Agents of lysosomal damage include lysosomotropic drugs (such as LLOMe, chloroquine,
SSRIs), neurotoxic aggregates (such as tau), and oxidative stress (as occurs after ischemic stroke). Lysosomal
damage results in lysosomal membrane permeabilization (LMP) with immediate collapse of pH and calcium
gradients, progressing to holes in the lysosomal membrane. Even though lysosomes are critical to neuronal
function and often causally linked to neurological pathologies, the response of neurons to lysosomal damage on
a mechanistic cellular level is poorly understood. This proposal focuses on new a damage response we
discovered (late endosome rapid response “LERR”) for responding to and recovering from LMP.
Current work in non-neuronal cells has discovered that cells respond to LMP by first trying to repair the damaged
lysosome (in minutes). If repair fails, the cell disposes of damaged lysosomes via lysophagy (in hours) and
initiates new lysosome biogenesis (24 hours). Our unpublished work discovered that undamaged compartments
(especially LEs) rapidly change their dynamic behavior (in ~10 minutes). We pose the novel hypothesis that
LEs mount a rapid response to LMP to maintain moderately degradative compartments in the short term. We
propose two specific aims. Aim 1: Discover how endosomes in soma, dendrites, and axons respond to LMP.
We will use vital sensors and multiplexing by live imaging of cortical neurons to determine the response of LEs
and lysosomes in the soma, the dendrites, and the axon in order to elucidate how LMP responses are adapted
to the great expanse of dendritic and axonal arbors. We hypothesize that dendritic compartments maintain
moderate degradative capacity by halting fusion with damaged lysosomes in the soma.
Aim 2: Discover if the neuronal “LE rapid response” is protective. Rab7 is the master regulator of LE maturation.
We hypothesize that Rab7 effector cascades are required for the LE response to LMP and for return to normal
after LLMOe washout. We will use pharmacological inhibition of key nodes of endosome maturation and
transport in combination with acute approaches of Rab7 interference, including photoactivatable Rab7-dominant
negative (DN) and degron tagged-Rab7-DN for rapid interference. Carrying out the proposed work holds the
promise of establishing new paradigms for how protein turnover is spatially regulated in neurons.
所有细胞中的蛋白质稳态都是通过调节蛋白质合成和蛋白质合成之间的平衡来维持的。
降解由于神经元是非常大和非常长的寿命,维护神经元
蛋白质组学是一个非常具有挑战性的课题。正常蛋白质周转的中断可导致有毒物质的积累。
聚集、神经元功能障碍和死亡。毫不奇怪,与降解途径相关的基因
通常与神经系统疾病有关。对于神经元如何监测和控制,
处理蛋白质稳定压力,以及轴突和树突如何适应不同的机制来做到这一点
有效地蛋白质抑制应激的一个原因是溶酶体损伤,其发生频率远高于
以前实现的。溶酶体损伤剂包括亲溶酶体药物(如LLOMe、氯喹、氯喹、苯丙氨酸)。
SSRIs)、神经毒性聚集体(如tau)和氧化应激(如缺血性卒中后发生的)。溶酶体
损伤导致溶酶体膜透化(LMP),pH和钙立即崩溃
梯度,进展到溶酶体膜上的孔。尽管溶酶体对神经元的
神经元对溶酶体损伤的反应,通常与神经病理学有因果关系。
对细胞水平的机制了解甚少。这项建议的重点是新的损害反应,
发现(晚期内体快速反应“LERR”)用于响应LMP和从LMP恢复。
目前在非神经元细胞中的研究发现,细胞对LMP的反应是首先试图修复受损的细胞,
溶酶体(分钟)。如果修复失败,细胞会通过噬菌体(lysophagy)(数小时)处理受损的溶酶体,
启动新的溶酶体生物发生(24小时)。我们未发表的研究发现,
(尤其是LE)快速改变其动态行为(在约10分钟内)。我们提出了一个新的假设,
LE对LMP快速响应,以在短期内维持中度降解隔室。我们
提出两个具体目标。目的1:探索索马、树突和轴突中的内体对LMP的反应。
我们将使用重要的传感器和多路复用通过大脑皮层神经元的实时成像来确定LE的反应
以及索马、树突和轴突中的溶酶体,以阐明LMP反应如何适应
到广阔的树枝状和轴突乔木。我们假设树突状区室维持着
通过停止与索马中受损溶酶体的融合而具有中等降解能力。
目的2:发现神经元的“LE快速反应”是否具有保护作用。Rab 7是LE成熟的主要调节因子。
我们假设Rab 7效应级联是LE对LMP的反应和恢复正常所必需的
在LLMOe清洗之后。我们将使用药物抑制内体成熟的关键节点,
转运结合Rab 7干扰的急性方法,包括光活化Rab 7显性
阴性(DN)和降解决定子标记的Rab 7-DN用于快速干扰。开展拟议的工作,
有望为神经元中蛋白质周转的空间调控建立新的范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bettina R Winckler其他文献
Bettina R Winckler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bettina R Winckler', 18)}}的其他基金
Identification of neurotrophic extracellular vesicles
神经营养性细胞外囊泡的鉴定
- 批准号:
9765756 - 财政年份:2019
- 资助金额:
$ 43.46万 - 项目类别:
Multifunctional roles for doublecortin (DCX)in neural development
双皮质素 (DCX) 在神经发育中的多功能作用
- 批准号:
8700554 - 财政年份:2013
- 资助金额:
$ 43.46万 - 项目类别:
Multifunctional roles for doublecortin (DCX)in neural development
双皮质素 (DCX) 在神经发育中的多功能作用
- 批准号:
8609999 - 财政年份:2013
- 资助金额:
$ 43.46万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.46万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 43.46万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.46万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 43.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists