Structural biology core
结构生物学核心
基本信息
- 批准号:10512622
- 负责人:
- 金额:$ 566.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAffinityAlgorithmic AnalysisArtificial IntelligenceAutomobile DrivingBinding ProteinsBiological ProcessBiologyCOVID-19 pandemicCellsClassificationCollaborationsCollectionComplexCryo-electron tomographyCryoelectron MicroscopyCrystallizationCrystallographyDataData CollectionDatabasesDefectDevelopmentDockingDropsDrug DesignDrug ScreeningEnsureEssential DrugsGenerationsGoalsGrantHigh Performance ComputingImageIn SituLaboratoriesLeadLipidsMass Spectrum AnalysisMembrane ProteinsMicroscopeModelingMolecularMolecular ConformationMolecular StructureNucleoproteinsOxidesPharmacologic SubstancePhasePlayProcessProteinsProteomicsPublicationsRNA VirusesRapid screeningReagentRecording of previous eventsResearch PersonnelResolutionRobotRoboticsRoentgen RaysRoleSamplingScienceServicesSourceStructureSurfaceTechniquesTechnologyTherapeuticTimeViralViral ProteinsVirus AssemblyVirus-like particleVisualizationWestern BlottingWorkX-Ray Crystallographybasebeamlinecluster computingdenoisingdesigndetectordrug developmentdrug discoverydrug mechanismexperienceexperimental studyfield emission gungraphenehigh throughput screeningimaging detectorinhibitorinsightlarge datasetsmeetingsnanolitrenanometer resolutionnew technologynovelnovel therapeuticspandemic diseaseparticleprogramsprotein complexprotein structurerelating to nervous systemresponsescreeningsmall moleculestructural biologytherapeutic developmenturinary gonadotropin fragment
项目摘要
CORE 4: SRUCTURAL BIOLOGY
SUMMARY
Structural biology plays a key role in elucidating molecular mechanisms of biological processes and in
therapeutic development. De novo structure elucidation can delineate novel interaction interfaces guiding
fundamentally new drug screening campaigns. Molecular structures can be used as targets for computational
docking to obtain novel chemotypes that can then be optimized to become potent inhibitors. Visualizing protein
structures bound to inhibitor hits or leads at a high resolution is invaluable for the chemists rationally optimizing
compounds based on the protein binding pocket. The central role of structural biology in developing therapeutics
is underlined by the fact that it is involved in three stages of the QCRG Drug Discovery Platform and every
Project. The goal of the Structural Biology Core is to provide cutting-edge X-ray crystallography and cryo-
electron microscopy (Cryo-EM) services to the Projects. Core Investigators have a track record of technological
development in both X-ray and Cryo-EM fields and a history of very effectively working together. A testament to
this is that at the start of the COVID-19 pandemic, we formed the QCRG Structural Biology Consortium (QCRG
SBC), which in the span of a year yielded five structure-based publications on SARS-CoV-2. This experience
allowed for fine tuning the practical aspects of working together like sharing common facilities, having regular
project focused meetings and online spaces for continued project discussions, databases for reagents and
project progress, etc. Therefore, the Structural Biology Core will present a seamless one stop solution for the
structural biology needs of this proposal. Specifically, in Aim 1, we will provide support on X-ray crystallography
based structural studies for proteins that express in suitable quantities. Crystallography will be especially
important for visualizing hit and lead compounds bound to their targets at the highest possible resolutions to
drive structure-based drug design. Our robotized high-throughput screening facilities allow for setting up and
inspecting tens of thousands of nanoliter sized crystal drops (including membrane proteins), enabling rapid
condition screening. We share beamline 8.3.1 at Lawrence Berkeley National Laboratory (LBNL) with regular
time slots available for data collection, allowing for regular and easy access to a high flux X-ray source. In Aim
2, we will leverage our state-of-the-art facilities to enable Cryo-EM studies of viral proteins and complexes. We
have fully staffed facilities with five Field Emission Gun (FEG) microscopes equipped with the latest direct
detector cameras and access to high performance computing clusters and GPU workstations for processing. For
Cryo-EM studies, we will leverage our recent advances in grid technology, denoising and incorporation of artificial
intelligence (AI) predicted protein structures, to resolve previously unseen viral protein interactions. In addition,
we have set up the UCSF Center for Cellular Structural Analysis enabling high-resolution in situ cryo-EM
tomographic studies of virus-like particles. Overall, the Structural Biology Core will provide atomic resolution
insights to the proposal at all scales and resolutions, driving therapeutic development at all stages of the Project.
核心4:术生物学
概括
结构生物学在阐明生物过程的分子机制以及在
治疗发展。从头结构阐明可以描绘出新的相互作用界面引导
从根本上讲,新的药物筛查运动。分子结构可以用作计算的目标
对接获得新的化学型,然后可以优化成为有效抑制剂。可视化蛋白质
与抑制剂击中或高分辨率结合的结构对于化学家合理优化是宝贵的
基于蛋白质结合袋的化合物。结构生物学在开发治疗学中的核心作用
它是由QCRG药物发现平台的三个阶段和每个阶段所涉及的事实所强调的。
项目。结构生物学核心的目的是提供尖端的X射线晶体学和冷冻 -
电子显微镜(Cryo-EM)服务。核心调查人员有技术的记录
X射线和冷冻EM领域的发展以及非常有效合作的历史。证明
这是在COVID-19大流行病开始时,我们组成了QCRG结构生物学联盟(QCRG
SBC),在一年的时间里,它在SARS-COV-2上产生了五个基于结构的出版物。这个经历
可以微调共同努力的实际方面,例如共享共同的设施,定期
以项目为中心的会议和在线空间进行持续的项目讨论,试剂数据库和
因此,项目进度等。因此,结构生物学核心将为
该建议的结构生物学需求。具体而言,在AIM 1中,我们将为X射线晶体学提供支持
基于适当量表达的蛋白质的基于结构研究。晶体学尤其是
对于以最高的分辨率绑定到目标的命中和铅化合物至关重要
基于驱动结构的药物设计。我们的机器人高通量筛选设施允许设置和
检查成千上万的纳米尺寸晶体滴(包括膜蛋白),使能够快速
条件筛查。我们在劳伦斯·伯克利国家实验室(LBNL)与梁线8.3.1共享
可用于数据收集的时间插槽,可定期且轻松访问高通量X射线源。目标
2,我们将利用我们的最先进的设施来实现对病毒蛋白和复合物的冷冻EM研究。我们
配备了配备最新直接的五个现场排放枪(FEG)显微镜
检测器摄像机并访问高性能计算簇和GPU工作站进行处理。为了
冷冻EM研究,我们将利用我们最近在网格技术上的进展
智力(AI)预测蛋白质结构,以解决以前看不见的病毒蛋白相互作用。此外,
我们已经建立了UCSF的细胞结构分析中心,实现了高分辨率原位冷冻EM
病毒样颗粒的层析成像研究。总体而言,结构生物学核心将提供原子分辨率
在各个规模和决议方面对该提案的见解,在项目的各个阶段推动治疗性开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID A. AGARD其他文献
DAVID A. AGARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID A. AGARD', 18)}}的其他基金
Chaperone protection in Lewy body and Alzheimer’s dementias: determining the structural, molecular and cellular mechanisms of a novel, non-canonical Hsp70 action blocking a-synuclein oligomerization
路易体和阿尔茨海默氏痴呆中的伴侣保护:确定阻断 α-突触核蛋白寡聚化的新型非典型 Hsp70 作用的结构、分子和细胞机制
- 批准号:
10649331 - 财政年份:2023
- 资助金额:
$ 566.18万 - 项目类别:
Core B: Macromolecular and Cellular Structure Core
核心B:高分子和细胞结构核心
- 批准号:
10304091 - 财政年份:2021
- 资助金额:
$ 566.18万 - 项目类别:
Core B: Macromolecular and Cellular Structure Core
核心B:高分子和细胞结构核心
- 批准号:
10493220 - 财政年份:2021
- 资助金额:
$ 566.18万 - 项目类别:
Tau Metabolism in FTD: From Gene Mutations to Molecular Chaperones and Lysosomal Proteases
FTD 中的 Tau 代谢:从基因突变到分子伴侣和溶酶体蛋白酶
- 批准号:
10493197 - 财政年份:2021
- 资助金额:
$ 566.18万 - 项目类别:
Tau Metabolism in FTD: From Gene Mutations to Molecular Chaperones and Lysosomal Proteases
FTD 中的 Tau 代谢:从基因突变到分子伴侣和溶酶体蛋白酶
- 批准号:
10304089 - 财政年份:2021
- 资助金额:
$ 566.18万 - 项目类别:
Structure and Mechanism: Hsp90 proteostasis, cilia biogenesis and the jumbo phage “nucleus”
结构和机制:Hsp90 蛋白质稳态、纤毛生物发生和巨型噬菌体 – 细胞核 –
- 批准号:
10407008 - 财政年份:2016
- 资助金额:
$ 566.18万 - 项目类别:
Structure and Mechanism: Hsp90 proteostasis, cilia biogenesis and the jumbo phage “nucleus”
结构和机制:Hsp90 蛋白质稳态、纤毛生物发生和巨型噬菌体 – 细胞核 –
- 批准号:
10164184 - 财政年份:2016
- 资助金额:
$ 566.18万 - 项目类别:
The Structure and Regulation of Microtubule Nucleation by y-tubulin
y-微管蛋白对微管成核的结构和调控
- 批准号:
8668220 - 财政年份:2014
- 资助金额:
$ 566.18万 - 项目类别:
Characterization of a bacteriophage tubulin involved in viral replication
参与病毒复制的噬菌体微管蛋白的表征
- 批准号:
8420103 - 财政年份:2013
- 资助金额:
$ 566.18万 - 项目类别:
Characterization of a bacteriophage tubulin involved in viral replication
参与病毒复制的噬菌体微管蛋白的表征
- 批准号:
9057082 - 财政年份:2013
- 资助金额:
$ 566.18万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 566.18万 - 项目类别:
Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases
用于探测蛋白激酶高度特异性相互作用的通用纳米传感器
- 批准号:
10719635 - 财政年份:2023
- 资助金额:
$ 566.18万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10440579 - 财政年份:2022
- 资助金额:
$ 566.18万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10644013 - 财政年份:2022
- 资助金额:
$ 566.18万 - 项目类别:
High-throughput disulfide and FRET scanning to reveal protein conformational ensembles in vitro and in vivo.
高通量二硫键和 FRET 扫描可揭示体外和体内蛋白质构象整体。
- 批准号:
10191303 - 财政年份:2021
- 资助金额:
$ 566.18万 - 项目类别: