Structure and Mechanism: Hsp90 proteostasis, cilia biogenesis and the jumbo phage “nucleus”
结构和机制:Hsp90 蛋白质稳态、纤毛生物发生和巨型噬菌体 – 细胞核 –
基本信息
- 批准号:10164184
- 负责人:
- 金额:$ 86.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsBacteriophagesBiochemicalBiochemistryBiologicalBiophysicsBirthCell NucleusCell physiologyCellsCellular biologyCentriolesCentrosomeCiliaClientClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexCryoelectron MicroscopyCytoskeletonDNADNA biosynthesisDiseaseDockingEpithelial CellsExcisionFreezingGenetic TranscriptionGoalsImmunityIn SituIn VitroInfectionInterphase CellKnock-outLifeLiquid substanceMaintenanceMalignant NeoplasmsMature CentrioleMembraneMicrotubulesMolecularMolecular ChaperonesMusOrganellesOrganismProcessProteinsProteomeResearchResistanceResolutionSensorySignal TransductionStructureSystemTechnologyThinnessTracheal EpitheliumTriageTubulinVisualizationWorkciliopathycilium biogenesiscilium motilityhuman diseasekinetosomemisfolded proteinmonolayerpressureprotein aggregationproteostasisreconstitutiontherapeutic targettomographyubiquitin-protein ligasevirtual
项目摘要
ABSTRACT
My previous MIRA period focused on mechanisms of microtubule nucleation, centrosome structure and the
phage-encoded cytoskeleton and “nucleus”. Now that my HHMI has ended, our strong efforts on protein ho-
meostasis are included in this MIRA proposal. Throughout, our work seeks to understand fundamental molecu-
lar mechanisms that underly cellular function. Where possible, complex systems are reconstituted in vitro and
analyzed in atomic detail with the implications explored at a cellular level. The research has three parts.
I. Birth, life and destruction: mechanisms of Hsp90/Hsp70-driven proteostasis: Maintenance of the
cellular proteome is one of the most fundamental aspects of all organisms. Molecular chaperones facilitate
folding and activation, sequester or recover aggregated proteins, participate in the removal of irreversibly mis-
folded proteins, and help regulate folding capacity according to cellular need. While critical players have been
identified, the molecular mechanisms by which most of these tasks are accomplished remain unknown. We
focus on the cytosolic Hsp90 chaperones that facilitate the folding and activation of ~10% of the proteome.
Hsp90's “clients” are enriched in proteins important for cellular signaling, proliferation, and survival making
Hsp90 a valuable therapeutic target for multiple diseases. Despite the biological importance, the underlying
mechanism of client remodeling is unknown, as is how the chaperones facilitate folding vs degradation triage
decisions by presenting clients to E3 ligases. Through in vitro reconstitution, extensive biochemical, biophysi-
cal and cryoEM structural analyses our goal is to elucidate the molecular mechanisms of these processes.
II. Structure of the basal body transition zone, tomography technology: In non-dividing cells, centrioles
mature into basal bodies that dock at the membrane leading to the formation of a primary cilium which serves
as a sensory organelle on virtually all animal cells, or motile cilia to move fluid. These structures are important
in numerous human diseases, including cancer and a broad array of ciliopathies. Unfortunately, there is only
limited understanding of centriole or basal body structure, how the basal body docks at the membrane, transi-
tions to an axoneme, or provides a distinct cellular compartment. We will use cultured mouse tracheal epithelial
cells which can be grown and differentiated on grids to produce arrays of motile cilia. Cells will be high pres-
sure frozen and FIB-milled to create thin lamella for high-resolution in situ cryoEM. Importantly, key proteins
can be knocked out by CRISPR or tagged with Ferri-tag for simultaneous like/cryoEM visualization.
Phage “nucleus” and host immunity evasion: The cell biology being revealed by Phi-KZ jumbo phages
is simply extraordinary (collaboration Pogliano, UCSD), demonstrating what appears to be an entirely new
concept in compartment formation. Upon infection, these phage form a “nucleus” from a self-assembling pro-
tein monolayer shell that is centered by a dynamically unstable tubulin cytoskeleton. The shell grows as the
phage DNA replicates, selectively imports DNA replication and transcription machinery, yet excludes cytosolic
proteins and GFP. Collaborating with (Bondy-Denomy, UCSF) has shown that the shell confers resistance to
all known host immunity factors (CRISPRs, restriction endoncleases). The molecular basis for these processes
is unknown. We focus on the determining shell assembly principles and the mechanism of selective transport.
摘要
我以前的MIRA期间集中在微管成核机制,中心体结构和
噬菌体编码的细胞骨架和“细胞核”。现在我的HHMI已经结束,我们对蛋白质的强烈努力-
在MIRA提案中包含了meostasis。在整个过程中,我们的工作旨在了解基本的分子-
更大的细胞功能机制。在可能的情况下,在体外重建复杂的系统,
在细胞水平探索的影响,在原子细节分析。研究分为三个部分。
I.出生、生命和毁灭:Hsp 90/Hsp 70驱动的蛋白稳态机制:
细胞蛋白质组是所有生物体最基本的方面之一。分子伴侣促进
折叠和激活,螯合或恢复聚集的蛋白质,参与不可逆的错误-
折叠蛋白质,并帮助调节折叠能力,根据细胞的需要。虽然关键球员一直在
虽然已经确定,但大多数这些任务完成的分子机制仍然未知。我们
集中在胞质Hsp 90分子伴侣,促进折叠和激活约10%的蛋白质组。
Hsp 90的“客户”富含对细胞信号传导、增殖和生存至关重要的蛋白质
热休克蛋白90是多种疾病治疗的重要靶点。尽管在生物学上很重要,
客户端重塑的机制尚不清楚,伴侣蛋白如何促进折叠与降解分流
通过将客户端呈现给E3连接酶来做出决定。通过体外重组,广泛的生化,生物物理-
我们的目标是阐明这些过程的分子机制。
二.基体过渡区的结构,断层摄影技术:在非分裂细胞中,中心粒
成熟为基底体,停靠在膜上,导致形成初级纤毛,
作为几乎所有动物细胞上的感觉器,或移动流体的运动纤毛。这些结构很重要
在许多人类疾病中,包括癌症和广泛的纤毛病。不幸的是,
对中心粒或基体结构的了解有限,基体如何停靠在膜上,transi-
连接到轴丝,或提供不同的细胞隔室。我们将使用培养的小鼠气管上皮细胞
这些细胞可以在网格上生长和分化以产生运动纤毛阵列。细胞将处于高压状态-
确保冷冻和FIB研磨以产生用于高分辨率原位cryoEM薄层。重要的是,
可以通过CRISPR敲除或用Ferri标签标记,用于同时进行类似/cryoEM可视化。
噬菌体“核”和宿主免疫逃避:Phi-KZ巨型细胞揭示的细胞生物学
简直是非凡的(合作Pogliano,UCSD),展示了一个全新的
概念形成。感染后,这些噬菌体从一个自组装的前体形成一个“核”,
以动态不稳定的微管蛋白细胞骨架为中心的单层壳。贝壳随着
噬菌体DNA复制,选择性地输入DNA复制和转录机制,但排除胞质
蛋白质和GFP。与(Bondy-Denomy,UCSF)的合作表明,该壳赋予对
所有已知的宿主免疫因子(CRISPR,限制性内切酶)。这些过程的分子基础
不明我们专注于决定壳组装原则和选择性运输的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID A. AGARD其他文献
DAVID A. AGARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID A. AGARD', 18)}}的其他基金
Chaperone protection in Lewy body and Alzheimer’s dementias: determining the structural, molecular and cellular mechanisms of a novel, non-canonical Hsp70 action blocking a-synuclein oligomerization
路易体和阿尔茨海默氏痴呆中的伴侣保护:确定阻断 α-突触核蛋白寡聚化的新型非典型 Hsp70 作用的结构、分子和细胞机制
- 批准号:
10649331 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Core B: Macromolecular and Cellular Structure Core
核心B:高分子和细胞结构核心
- 批准号:
10493220 - 财政年份:2021
- 资助金额:
$ 86.72万 - 项目类别:
Core B: Macromolecular and Cellular Structure Core
核心B:高分子和细胞结构核心
- 批准号:
10304091 - 财政年份:2021
- 资助金额:
$ 86.72万 - 项目类别:
Tau Metabolism in FTD: From Gene Mutations to Molecular Chaperones and Lysosomal Proteases
FTD 中的 Tau 代谢:从基因突变到分子伴侣和溶酶体蛋白酶
- 批准号:
10304089 - 财政年份:2021
- 资助金额:
$ 86.72万 - 项目类别:
Tau Metabolism in FTD: From Gene Mutations to Molecular Chaperones and Lysosomal Proteases
FTD 中的 Tau 代谢:从基因突变到分子伴侣和溶酶体蛋白酶
- 批准号:
10493197 - 财政年份:2021
- 资助金额:
$ 86.72万 - 项目类别:
Structure and Mechanism: Hsp90 proteostasis, cilia biogenesis and the jumbo phage “nucleus”
结构和机制:Hsp90 蛋白质稳态、纤毛生物发生和巨型噬菌体 – 细胞核 –
- 批准号:
10407008 - 财政年份:2016
- 资助金额:
$ 86.72万 - 项目类别:
The Structure and Regulation of Microtubule Nucleation by y-tubulin
y-微管蛋白对微管成核的结构和调控
- 批准号:
8668220 - 财政年份:2014
- 资助金额:
$ 86.72万 - 项目类别:
Characterization of a bacteriophage tubulin involved in viral replication
参与病毒复制的噬菌体微管蛋白的表征
- 批准号:
8420103 - 财政年份:2013
- 资助金额:
$ 86.72万 - 项目类别:
Characterization of a bacteriophage tubulin involved in viral replication
参与病毒复制的噬菌体微管蛋白的表征
- 批准号:
9057082 - 财政年份:2013
- 资助金额:
$ 86.72万 - 项目类别:
相似海外基金
Engineered bacteriophages as biosensors for the rapid diagnosis of bacterial infection
工程噬菌体作为生物传感器,用于快速诊断细菌感染
- 批准号:
2879026 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Studentship
Designable, Orientable, and Responsive Photonic Crystals Based on Bacteriophages
基于噬菌体的可设计、可定向、响应灵敏的光子晶体
- 批准号:
23KJ0533 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
From cells to communities: The multi-scale impacts of bacteriophages in the gut microbiome
从细胞到群落:噬菌体对肠道微生物组的多尺度影响
- 批准号:
10714109 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Bacteriophages in the ageing gut as targeted therapeutics
老化肠道中的噬菌体作为靶向治疗
- 批准号:
2893971 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Studentship
AI mining of the bacteriophages metagenome
噬菌体宏基因组的人工智能挖掘
- 批准号:
2890966 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Studentship
Understanding cell surface recognition by bacteriophages to engineer novel therapeutics targeting Enterococcus cecorum, an emerging poultry pathogen
了解噬菌体的细胞表面识别,以设计针对盲肠肠球菌(一种新兴的家禽病原体)的新型疗法
- 批准号:
2881108 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Studentship
Demystifying virus-host interactions in Clostridioides difficile through genetic engineering of bacteriophages and the bacterial S-layer
通过噬菌体和细菌 S 层的基因工程揭开艰难梭菌中病毒与宿主相互作用的神秘面纱
- 批准号:
494839 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Operating Grants
Bacteriophages against surgical site infections
噬菌体对抗手术部位感染
- 批准号:
10070793 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Collaborative R&D
Involvement of Bacteriophages in the Formation of Oral Bacterial Flora by Phageome Analysis
通过噬菌体分析了解噬菌体参与口腔细菌菌群的形成
- 批准号:
23H03074 - 财政年份:2023
- 资助金额:
$ 86.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bacteriophages as key players in bacterial adaptation to the human gut
噬菌体是细菌适应人类肠道的关键参与者
- 批准号:
2748665 - 财政年份:2022
- 资助金额:
$ 86.72万 - 项目类别:
Studentship














{{item.name}}会员




