Mechanistic dissection of dynamics of transcriptional regulation by chromatin looping

染色质环转录调控动力学的机制剖析

基本信息

项目摘要

A major driver of transcriptional regulation in mammals is the association of gene promoters with enhancers, which can be hundreds of kilobases away from their cognate promoters. Enhancers have been proposed to potentiate transcription through looping to contact the promoter. The broader 3D organization of the genome into topologically associated domains (TADs) has been proposed to restrict E-P looping to primarily occur inside the same TAD and not between two TADs, and to thereby contribute to regulation of transcription. Both TAD structure and enhancer activities change through development, and mutations of many of the factors involved in regulating genome organization have been identified as causative features of both developmental disease and cancers. However, recent studies of developmental genes have obtained conflicting results on whether genome organization can influence transcription. Furthermore, it remains unclear as to how E-P interactions are related to transcription, and whether direct contact is even required. The majority of studies of 3D genome organization and chromatin looping have employed genomics or microscopy approaches which rely on fixation, and therefore do not allow for the measurement of the dynamics of these processes. Additionally, most recent studies have focused on single, developmentally regulated genes which may be subject to a high degree of redundancy and complexity. Therefore, in order to address these major questions of the contribution of TADs and E-P contact to transcriptional regulation, the proposed research will employ a bottom-up approach to construct synthetic TADs and E-P pairs, and measure chromatin looping and transcription dynamics together in live cells through newly developed live-cell super resolution microscopy approaches. Mechanistic hypotheses for the function of these processes will then be developed using polymer simulations of loop extrusion and evaluated through comparison with experimental data and targeted perturbations without the redundancy and complexity inherent to endogenous genes. Together, the proposed research will uncover the interplay between genome organization and transcriptional regulation and develop a mechanistic understanding of both TAD formation and E-P interactions. This will provide a basis for future development of approaches to correct misfolding of the genome in disease. The proposed research will be paired with training to develop the applicant's skills as a research scientist to allow him to succeed in the proposed project and in his future career as he aims to become an independent PI. In addition to developing the applicant's experimental and computational expertise, mentorship from the sponsor and co-sponsor will involve training in communicating the applicant's research, mentorship of students, lab management, responsible conduct of research and preparation for future career goals. This training will be conducted in a leading academic environment in MIT's Department of Biological Engineering, where the applicant will be in close proximity to world leaders in a variety fields and a wealth of expertise and facilities.
哺乳动物中转录调控的主要驱动力是基因启动子与转录因子的关联。 增强子,其可远离其同源启动子数百个碱基。增强剂已经 提出通过环化以接触启动子来增强转录。更广泛的3D组织 已经提出将基因组分成拓扑相关结构域(TADs)来限制E-P环主要 发生在同一个转录因子内,而不是在两个TAD之间,从而有助于转录的调节。 基因结构和增强子活性都在发育过程中发生变化,许多因子的突变 参与调节基因组组织已被确定为两种发育的致病特征 疾病和癌症。然而,最近对发育基因的研究在以下方面获得了相互矛盾的结果: 基因组结构是否会影响转录。此外,目前还不清楚E-P如何 相互作用与转录有关,甚至与是否需要直接接触有关。 3D基因组组织和染色质循环的大多数研究都采用基因组学或 显微镜方法依赖于固定,因此不允许测量动力学 这些过程。此外,最近的研究主要集中在单个发育调控基因上, 其可能具有高度的冗余性和复杂性。因此,为了解决这些主要问题, TADs和E-P接触对转录调控的贡献的问题,拟议的研究将 采用自下而上的方法构建合成的TADs和E-P对,并测量染色质环, 通过新开发的活细胞超分辨率显微镜在活细胞中一起转录动力学 接近。这些过程的功能机制假说,然后将开发使用聚合物 模拟环挤压,并通过与实验数据的比较进行评估,并有针对性地 干扰而没有内源基因固有的冗余和复杂性。在一起,拟议的 研究将揭示基因组组织和转录调控之间的相互作用,并开发一种 机械的理解,无论是形成和E-P的相互作用。这将为今后的 开发纠正疾病中基因组错误折叠的方法。 拟议的研究将与培训配对,以发展申请人作为研究科学家的技能 让他在拟议的项目和他未来的职业生涯中取得成功,因为他的目标是成为一个独立的 Pi.除了发展申请人的实验和计算专业知识,导师从 赞助商和共同赞助商将涉及培训,在沟通申请人的研究,指导学生, 实验室管理,负责任的研究和未来职业目标的准备。将培训以文件形式进行 在麻省理工学院生物工程系领先的学术环境中进行, 申请人将在接近世界领导人在各种领域和丰富的专业知识和设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miles Kocur Huseyin其他文献

Miles Kocur Huseyin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miles Kocur Huseyin', 18)}}的其他基金

Mechanistic dissection of dynamics of transcriptional regulation by chromatin looping
染色质环转录调控动力学的机制剖析
  • 批准号:
    10704619
  • 财政年份:
    2021
  • 资助金额:
    $ 6.76万
  • 项目类别:
Mechanistic dissection of dynamics of transcriptional regulation by chromatin looping
染色质环转录调控动力学的机制剖析
  • 批准号:
    10313180
  • 财政年份:
    2021
  • 资助金额:
    $ 6.76万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了