Imaging at the speed of spikes: An electro-optical multiphoton microscope
以尖峰速度成像:光电多光子显微镜
基本信息
- 批准号:10516843
- 负责人:
- 金额:$ 198.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAutomobile DrivingBehaviorBehavior ControlBehavioral trialBrainCellsCrystallizationCustomDevelopmentDevicesDiseaseDisease modelElectronicsEngineeringFutureGlutamatesImageLasersLearningLightLocationMembraneMethodsMicroscopeNeuronsNeurosciencesOpticsPerformancePhysicsPotassiumProcessReaction TimeReagentScanningSignal TransductionSpeedSynapsesSynaptic plasticitySystemTechnologyTemperatureTimeWorkbasebrain volumedesignflexibilityin vivoin vivo imaginglightspeedmillisecondmultidisciplinarymultiphoton microscopynanosecondneuromechanismnoveloptogeneticsprototyperelating to nervous systemsensorsimulationtooltransmission processtwo photon microscopytwo-photonvoltage
项目摘要
Abstract
Signals in the brain are transmitted and transformed on a millisecond timescale. The precise timing of activity can carry unique information, correlate perceptual decisions, and powerfully influence synaptic plasticity. Therefore, to understand the circuits that generate behavior and the circuit changes responsible for learning, we must interrogate signaling in vivo at millisecond timescales. Since the advent of two-photon microscopy, these signals have primarily been inferred in vivo through the use of fluorescent indicators with far slower dynamics. Recently, neuroscientists have made impressive gains in developing genetically-encoded indicators of neural activity with millisecond dynamics. However, current two-photon technology limits high-fidelity recording of fast membrane-bound indicators to very few compartments and for relatively little time, representing a major barrier to collecting the simultaneous recordings we need to understand the circuits that control behavior. To overcome this barrier, we propose to leverage the unparalleled speed of light deflection through electro-optical crystals. Recent breakthroughs in electro-optical deflection have enabled large increases in deflection range and nanosecond response times. However, small aperture and temperature gradients in commercial devices still limit the performance of these deflectors. We propose an entirely new deflector design capable of deflecting larger laser beams at high speeds. We will use these new deflectors to develop a microscope capable of random-access multiphoton interrogation of neurons and synapses with sub-microsecond access times. This tool to image synaptic and cellular activity across networks of neurons will provide neuroscientists with critical information on the processes that implement computations in the brain, as well as the disruption of these processes in models of disease.
摘要
大脑中的信号在毫秒级的时间尺度上传输和转换。活动的精确时间可以携带独特的信息,关联感知决策,并有力地影响突触可塑性。因此,为了了解产生行为的电路和负责学习的电路变化,我们必须在毫秒级的时间尺度上询问体内信号。自双光子显微镜出现以来,这些信号主要是通过使用荧光指示剂在体内推断的,其动力学要慢得多。最近,神经科学家在开发具有毫秒动力学的神经活动的遗传编码指标方面取得了令人印象深刻的进展。然而,目前的双光子技术将快速膜结合指标的高保真记录限制在非常少的隔室和相对较短的时间内,这是收集我们需要了解控制行为的电路的同时记录的主要障碍。为了克服这一障碍,我们建议利用电光晶体无与伦比的光偏转速度。电光偏转的最新突破使得偏转范围和纳秒响应时间大幅增加。然而,商业设备中的小孔径和温度梯度仍然限制了这些偏转器的性能。我们提出了一种全新的偏转器设计,能够偏转更大的激光束在高速。我们将使用这些新的偏转器,以开发一种显微镜,能够随机访问多光子讯问的神经元和突触亚微秒访问时间。这种跨神经元网络成像突触和细胞活动的工具将为神经科学家提供有关大脑中实现计算的过程以及疾病模型中这些过程的中断的关键信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Michael Kerlin其他文献
Aaron Michael Kerlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Michael Kerlin', 18)}}的其他基金
A dendritic nexus in the circuits that coordinate learning
协调学习的电路中的树突状连接
- 批准号:
10659554 - 财政年份:2023
- 资助金额:
$ 198.62万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 198.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 198.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 198.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 198.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




